Publications by authors named "Agnieszka Ambrozak"

The introduction of fluorine into bioactive molecules is a matter of importance in medicinal chemistry. In this study, representatives of various chemical entities of fluoroaromatic compounds were synthesized. Depending on the reaction conditions, either tetrafluorophthalimides or ammonium tetrafluorophthalamates are accessible from tetrafluorophthalic anhydride and primary amines.

View Article and Find Full Text PDF

The development of novel thalidomide derivatives as immunomodulatory and anti-angiogenic agents has revived over the last two decades. Herein we report the design and synthesis of three chemotypes of barbituric acids derived from the thalidomide structure: phthalimido-, tetrafluorophthalimido-, and tetrafluorobenzamidobarbituric acids. The latter were obtained by a new tandem reaction, including a ring opening and a decarboxylation of the fluorine-activated phthalamic acid intermediates.

View Article and Find Full Text PDF

Thalidomide has demonstrated clinical activity in various malignancies affecting immunomodulatory and angiogenic pathways. The development of novel thalidomide analogs with improved efficacy and decreased toxicity is an ongoing research effort. We recently designed and synthesized a new class of compounds, consisting of both tetrafluorinated thalidomide analogues (Gu973 and Gu998) and tetrafluorobenzamides (Gu1029 and Gu992).

View Article and Find Full Text PDF

A general synthesis protocol for the generation of tri- and tetrasubstituted 5-carbamoylhydantoins is described. Starting from barbituric acids and following bromination and reaction with primary amines, 5-aminobarbituric acids 3a-s and 8 were prepared. Compounds 3 and 8 were subjected to different conditions of a base-catalyzed rearrangement reaction to yield the 1,5,5-trisubstituted hydantoins 4a-s and the 1,3,5,5-tetrasubstituted hydantoin 5c, respectively.

View Article and Find Full Text PDF

A series of benzoxazinones was used to investigate the interaction of human cathepsin G with acyl-enzyme inhibitors. With respect to the primary specificity of cathepsin G, inhibitors with hydrophobic or basic residues at position 2 were included in the study. Parameters of the enzyme acylation and deacylation were determined by slow-binding kinetics in the presence of a chromogenic substrate.

View Article and Find Full Text PDF