Int J Occup Saf Ergon
January 2025
The objective of the study was to examine the mechanical and electrostatic properties of poly(vinyl chloride) intended for use in protective footwear. The poly(vinyl chloride) material was made with graphite (flake side dimensions 5 and 10 µm) additive in weight concentration variants from 0.5 to 10.
View Article and Find Full Text PDFThis study explores the impact of ageing factors - i.e., perspiration, disinfection procedures and ultraviolet radiation - on the structural and performance characteristics of novel viscoelastic polyurethane foams specifically developed for use in seals for respiratory protective devices (RPDs).
View Article and Find Full Text PDFMolecules
March 2024
The aim of the study was to produce new elastomeric materials containing butyl rubber (IIR) filled with silica and phyllosilicates (vermiculite, montmorillonite, perlite or halloysite tubes) with enhanced hydrophobicity and barrier properties and reduced chemical degradation. It was found that the filler type had a significant impact on the degree of cross-linking of butyl rubber and the properties of its vulcanizates. The highest degree of cross-linking and the highest mechanical strength were achieved for IIR composites filled with Arsil with perlite or halloysite tubes.
View Article and Find Full Text PDFThis work aimed to study the end of service life of soles of protective footwear resistant to selected mechanical factors and mineral oil. Three sole variants were examined; made from poly(ethylene-co-vinyl acetate) (EVA), poly(vinyl chloride) (PVC) and polyurethane (PU), currently widely used in all-rubber protective footwear. The preliminary study focused on the abrasion resistance and bending strength of the three sole materials after different times of exposure to mineral oil.
View Article and Find Full Text PDFThis paper discusses the cross-linking behaviors, mechanical and dynamical properties, and flammability of elastomeric composites containing unconventionally cured chlorosulfonated polyethylene (CSM). The purpose of this work was to verify the CSM ability to cross-link with iron(II,III) oxide (FeO) and to produce flame retardant materials. During the first series of tests, three types of CSM were used, differing in the content of bound chlorine (29-43%).
View Article and Find Full Text PDFGloves are one of the most important elements of personal protective equipment (PPE). To improve gloves properties, a lot of different methods of surface modifications are used. In this work, the application of geometric, chemical, and plasma surface modifications to improve the hydrophobicity of butyl (IIR) and silicone (MVQ) rubber are described.
View Article and Find Full Text PDFThe article presents significant results in research on creating superhydrophobic properties of materials which can be used as an interesting material for use in self-cleaning polymer protective gloves and similar applications where the superhydrophobicity plays a significant role. In this work the influence of laser surface modification of MVQ silicone rubber was investigated. The research was conducted using a nanosecond-pulsed laser at 1060 nm wavelength.
View Article and Find Full Text PDFThe properties of rubber materials are dependent on the characteristics of the elastomer matrix, the filler type, the cross-linking agent, the number of ingredients, and their interactions. In the previous article, we showed that chloroprene rubber can be efficiently cross-linked with copper(I) oxide or copper(II) oxide. During the processing of rubber compounds, the incorporation of a filler and a curing substance are two substantial parameters, such as the homogeneity of mixing and cross-linking that significantly affect the properties of the vulcanizates.
View Article and Find Full Text PDFThe evaluation of a possible application of functional shrinkable materials in thermally conductive electrical insulation elements was investigated. The effectiveness of an electron beam and gamma radiation on the crosslinking of a selected high density polyethylene grade was analyzed, both qualitatively and quantitatively. The crosslinked polymer composites filled with ceramic particles were successfully fabricated and tested.
View Article and Find Full Text PDFRigid polyurethane (PUR) foams reinforced with 1, 2, and 5 wt.% of salvia filler (SO filler) and montmorillonite-modified salvia filler (MMT-modified SO filler) were produced in the following study. The impact of 1, 2, and 5 wt.
View Article and Find Full Text PDFAmniotic stem cells promote adhesion and migration of epithelial cells. Obtaining a full sheet containing amniotic stem cells seems to be the best solution for the treatment of burn wounds. The main advantage of this method is obtaining a full sheet of cells by lowering the temperature below the transition temperature, which does not affect extracellular matrix.
View Article and Find Full Text PDFTubular chitosan-based hydrogels, obtained in an electrodeposition process, are subject of degradation and stability studies. The implants are prepared from polymer with different average molecular weight. This approach allows fabricating structures that vary in mass and wall thickness.
View Article and Find Full Text PDFThis article demonstrates that ionizing radiation induces simultaneous crosslinking and scission in poly(trimethylene carbonate--d-lactide) diblock and random copolymers. Copolymer films were electron-beam (EB) irradiated up to 300 kGy under anaerobic conditions and subsequently examined by evaluation of their structure (FT-IR, NMR), molecular weight, intrinsic viscosities, and thermal properties. Radiation chemistry of the copolymers is strongly influenced by the content of ester linkages of the lactide component.
View Article and Find Full Text PDFRigid polyurethane foams (RPUFs) were successfully modified with different weight ratios (0.5 wt%, 1.5 wt% and 5 wt%) of APIB-POSS and AEAPIB-POSS.
View Article and Find Full Text PDFThis article presents a workplace observations on manual work in cold environments and its impact on the selection of materials for protective gloves. The workplace observations was conducted on 107 workers in 7 companies and involved measurements of the temperature of air and objects in the workplaces; in addition the type of surface and shape of the objects was determined. Laboratory tests were also carried out on 11 materials for protective gloves to be used in cold environments.
View Article and Find Full Text PDF