Publications by authors named "Agnieszka A Wendorff"

Aging is characterized by an accumulation of myeloid-biased hematopoietic stem cells (HSCs) with reduced developmental potential. Genotoxic stress and epigenetic alterations have been proposed to mediate age-related HSC loss of regenerative and self-renewal potential. However, the mechanisms underlying these changes remain largely unknown.

View Article and Find Full Text PDF

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy that arises from transformation of T-cell primed hematopoietic progenitors. Although T-ALL is a heterogenous and molecularly complex disease, more than 65% of T-ALL patients carry activating mutations in the gene. The majority of T-ALL-associated mutations either disrupt the negative regulatory region, allowing signal activation in the absence of ligand binding, or result in truncation of the C-terminal PEST domain involved in the termination of NOTCH1 signaling by proteasomal degradation.

View Article and Find Full Text PDF

Long-range enhancers govern the temporal and spatial control of gene expression; however, the mechanisms that regulate enhancer activity during normal and malignant development remain poorly understood. Here, we demonstrate a role for aberrant chromatin accessibility in the regulation of expression in T-cell lymphoblastic leukemia (T-ALL). Central to this process, the NOTCH1- enhancer (N-Me), a long-range T cell-specific enhancer, shows dynamic changes in chromatin accessibility during T-cell specification and maturation and an aberrant high degree of chromatin accessibility in mouse and human T-ALL cells.

View Article and Find Full Text PDF

The plant homeodomain 6 gene () is frequently mutated in human T-cell acute lymphoblastic leukemia (T-ALL); however, its specific functional role in leukemia development remains to be established. Here, we show that loss of is an early mutational event in leukemia transformation. Mechanistically, genetic inactivation of in the hematopoietic system enhances hematopoietic stem cell (HSC) long-term self-renewal and hematopoietic recovery after chemotherapy by rendering knockout HSCs more quiescent and less prone to stress-induced activation.

View Article and Find Full Text PDF

Activating mutations in NOTCH1 are common in T cell acute lymphoblastic leukemia (T-ALL). Here we identify glutaminolysis as a critical pathway for leukemia cell growth downstream of NOTCH1 and a key determinant of the response to anti-NOTCH1 therapies in vivo. Mechanistically, inhibition of NOTCH1 signaling in T-ALL induces a metabolic shutdown, with prominent inhibition of glutaminolysis and triggers autophagy as a salvage pathway supporting leukemia cell metabolism.

View Article and Find Full Text PDF

Efforts to identify and annotate cancer driver genetic lesions have been focused primarily on the analysis of protein-coding genes; however, most genetic abnormalities found in human cancer are located in intergenic regions. Here we identify a new long range-acting MYC enhancer controlled by NOTCH1 that is targeted by recurrent chromosomal duplications in human T cell acute lymphoblastic leukemia (T-ALL). This highly conserved regulatory element, hereby named N-Me for NOTCH MYC enhancer, is located within a broad super-enhancer region +1.

View Article and Find Full Text PDF

Although canonical Notch signaling regulates multiple hematopoietic lineage decisions including T cell and marginal zone B cell fate specification, the downstream molecular mediators of Notch function are largely unknown. We showed here that conditional inactivation of Hes1, a well-characterized Notch target gene, in adult murine bone marrow (BM) cells severely impaired T cell development without affecting other Notch-dependent hematopoietic lineages such as marginal zone B cells. Competitive mixed BM chimeras, intrathymic transfer experiments, and in vitro culture of BM progenitors on Delta-like-expressing stromal cells further demonstrated that Hes1 is required for T cell lineage commitment, but dispensable for Notch-dependent thymocyte maturation through and beyond the beta selection checkpoint.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionkil15gjrcn78cfq4ai0prjif5mm3ik8c): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once