Publications by authors named "Agneta Askendal"

Titanium (Ti) is a well known metallic biomaterial extensively used in dental, orthopaedic-, and occasionally also in blood contacting applications. It integrates well to bone and soft tissues, and is shown upon blood plasma contact to activate the intrinsic pathway of coagulation and bind complement factor 3b. The material properties depend largely on those of the nm-thick dense layer of TiO(2) that becomes rapidly formed upon contact with air and water.

View Article and Find Full Text PDF

In the present study the initial blood compatibility of glycerol monooleate (GMO)-coated surfaces was evaluated after deposition to surfaces and in bulk. The model surface was silica onto which multiple layers of fibrinogen or human serum albumin (HSA) was immobilized. The protein-coated surfaces were subsequently dip-coated in GMO in ethanol and used for blood plasma and whole blood experiments.

View Article and Find Full Text PDF

Background: There is evidence of high matrix metalloproteinase (MMP) activity around sutures inserted into tendons. This probably results in tissue breakdown, allowing the suture to cut through the tendon, and thus contributes to repair-site elongation and gap formation. We therefore hypothesized that treatment with the MMP inhibitor doxycycline would improve the sutureholding capacity of tendon.

View Article and Find Full Text PDF

In the present work, blood plasma protein deposition to spontaneously air oxidized silicon, titanium and aluminium was re-investigated in vitro. Immunological- and null ellipsometry methods were used to detect and quantitate adsorbed proteins, RIA methods to study the retention of preadsorbed 125I-HSA upon exposure to buffer or blood plasma, and kallikrein-specific colorimetric substrate S-2302 to follow the surface generation of kallikrein. The results show that the contact activation of coagulation and complement systems are connected on Si and Ti, but not on Al, via coagulation factor XII.

View Article and Find Full Text PDF

C-reactive protein (CRP) interacts with phosphorylcholine (PC), Fcgamma receptors, complement factor C1q and cell nuclear constituents, yet its biological roles are insufficiently understood. The aim was to characterize CRP-induced complement activation by ellipsometry. PC conjugated with keyhole limpet hemocyanin (PC-KLH) was immobilized to cross-linked fibrinogen.

View Article and Find Full Text PDF

The aim of the present study was to ellipsometrically determine the thickness and surface mass density in air for up to 110-nm-thick organic layers made of alternatingly deposited layers of HSA and polyclonal anti-HSA on hydrophobic silicon. The ellipsometrically determined thickness was compared to that obtained by AFM and the deposited surface mass density calibrated with (125)I-labeled proteins. The results indicate a good agreement in protein layer thickness between AFM and ellipsometry when the protein film refractive index N(film)=1.

View Article and Find Full Text PDF

Actin exists as globular (G) monomers or polymeric filaments (F) in the cytoplasm of eukaryotic cells, mediating cell morphologic changes and motility. Large amounts of this protein may be released out to the extracellular compartment during tissue injury, but little is known about its role in biomaterial-related inflammation. We immobilized actin to methylated glass, methylated and aminated silicon, and gold model surfaces and studied the subsequent blood serum deposition and complement activation, generation of reactive oxygen species (ROS), and adhesion and aggregation of neutrophils and platelets.

View Article and Find Full Text PDF

Since the realization of a complement activation capacity by artificial surfaces upon contact with blood, a common belief has evolved that charged nucleophilic surface groups such as amine (-NH2) and hydroxyl (-OH) react with and eventually bind to the internal thioester in complement factor 3 (C3). A covalent amide or ester linkage is thereby supposed to form between C3b and the surface itself. In this report, we present complement surface binding data by null-ellipsometry for two nucleophilic surfaces (-NH2 and -OH), for surfaces with immunoglobulin G (IgG) covalently bound, and for IgG spontaneously pre-adsorbed to hydrophobic silicon.

View Article and Find Full Text PDF