Phys Rev Lett
September 2022
Small intestine motility and its ensuing flow of luminal content impact both nutrient absorption and bacterial growth. To explore this interdependence we introduce a biophysical description of intestinal flow and absorption. Rooted in observations of mice we identify the average flow velocity as the key control of absorption efficiency and bacterial growth, independent of the exact contraction pattern.
View Article and Find Full Text PDFSwimming microorganisms often experience complex environments in their natural habitat. The same is true for microswimmers in envisioned biomedical applications. The simple aqueous conditions typically studied in the lab differ strongly from those found in these environments and often exclude the effects of small volume confinement or the influence that external fields have on their motion.
View Article and Find Full Text PDFThe human gastrointestinal tract is home to trillions of microbes. Gut microbial communities have a significant regulatory role in the intestinal physiology, such as gut motility. Microbial effect on gut motility is often evoked by bioactive molecules from various sources, including microbial break down of carbohydrates, fibers or proteins.
View Article and Find Full Text PDFBacteria propel and change direction by rotating long, helical filaments, called flagella. The number of flagella, their arrangement on the cell body and their sense of rotation hypothetically determine the locomotion characteristics of a species. The movement of the most rapid microorganisms has in particular remained unexplored because of additional experimental limitations.
View Article and Find Full Text PDFPLoS Comput Biol
December 2019
Front Robot AI
September 2018
The field of synthetic microswimmers, micro-robots moving in aqueous environments, has evolved significantly in the last years. Micro-robots actuated and steered by external magnetic fields are of particular interest because of the biocompatibility of this energy source and the possibility of remote control, features suited for biomedical applications. While initial work has mostly focused on helical shapes, the design space under consideration has widened considerably with recent works, opening up new possibilities for optimization of propellers to meet specific requirements.
View Article and Find Full Text PDFMany motile microorganisms swim and navigate in chemically and mechanically complex environments. These organisms can be functionalized and directly used for applications (biohybrid approach), but also inspire designs for fully synthetic microbots. The most promising designs of biohybrids and bioinspired microswimmers include one or several magnetic components, which lead to sustainable propulsion mechanisms and external controllability.
View Article and Find Full Text PDF