Publications by authors named "Agnese Bisazza"

4-hydroxynonenal (HNE), a lipid peroxidation product, is a promising anti-neoplastic drug due to its remarkable anti-cancer activities. However, this possibility has not been explored, because the delivery of HNE is very challenging as a result of its low solubility and its poor stability. This study intentionally designed a new type of lipid nanocapsules specifically for HNE delivery.

View Article and Find Full Text PDF

Micro- and nanobubbles provide a promising non-viral strategy for ultrasound mediated gene delivery. Microbubbles are spherical gas-filled structures with a mean diameter of 1-8 μm, characterised by their core-shell composition and their ability to circulate in the bloodstream following intravenous injection. They undergo volumetric oscillations or acoustic cavitation when insonified by ultrasound and, most importantly, they are able to resonate at diagnostic frequencies.

View Article and Find Full Text PDF

4-Hydroxynonenal (HNE) is the most studied end product of the lipoperoxidation process, by virtue of its relevant biological activity. The antiproliferative and proapoptotic effects of HNE have been widely demonstrated in a great variety of tumor cell types in vitro. Thus, it might represent a promising new molecule in anticancer therapy strategies.

View Article and Find Full Text PDF

Background: The development of nonviral gene delivery systems is one of the most intriguing topics in nanomedicine. However, despite the advances made in recent years, several key issues remain unsettled. One of the main problems relates to the difficulty in designing nanodevices for targeted delivery of genes and other drugs to specific anatomic sites.

View Article and Find Full Text PDF

The activity of antivirals can be enhanced by their incorporation in nanoparticulate delivery systems. Peculiar polymeric nanoparticles, based on a β-cyclodextrin-poly(4-acryloylmorpholine) monoconjugate (β-CD-PACM), are proposed as acyclovir carriers. The experimental procedure necessary to obtain the acyclovir-loaded nanoparticles using the solvent displacement preparation method will be described in this chapter.

View Article and Find Full Text PDF

Three types of cyclodextrin nanosponges were synthetized cross-linking α, β or γ cyclodextrin with carbonyldiimidazole as cross-linker. Nanosponges are solid nanoparticles previously used as drug carriers. In this studies cyclodextrin nanosponges were developed as oxygen delivery system.

View Article and Find Full Text PDF

In this paper we report on the investigation, as DNA nonviral carriers, of three samples of an amphoteric polyamidoamine bearing 4-aminobutylguanidine deriving units, AGMA5, AGMA10, and AGMA20, characterized by different molecular weights (M(w) 5100, 10100, and 20500, respectively). All samples condensed DNA in spherical, positively charged nanoparticles and protected it against enzymatic degradation. AGMA10 and AGMA20 polyplexes had average diameters lower than 100 nm.

View Article and Find Full Text PDF

An amphoteric thiol-functionalized poly(amidoamine) nicknamed ISA23SH(10%) was synthesized. Rhenium complexes 1 and 2, containing 0.5 and 0.

View Article and Find Full Text PDF

Ultrasound (US) energy combined with gas-filled microbubbles has been used for several years in medical imaging. This study investigated the ability of oxygen-loaded chitosan bubbles to exchange oxygen in the presence or in the absence of US. Oxygen delivery is enhanced by sonication and both frequency and time duration of US affected the exchange kinetics.

View Article and Find Full Text PDF

Thermo-responsive chitosan microbubbles were developed as new therapeutic device for vehiculating gases to tissues concomitantly to hyperthermic treatments. Aiming at applications to non-invasive temperature monitoring, microbubbles were characterized for acoustic attenuation properties in the 1-15 MHz range both by direct methods and by B-mode Ultrasound imaging up to 43 degrees C, which is the temperature used in clinical hyperthermia. The chitosan microbubbles showed a mean diameter of 1 microm at room temperature, which slightly decreases after heating, enhancing gas delivery.

View Article and Find Full Text PDF

Chitosan-coated oxygen microbubbles of average diameter 2.5 mum, narrow size distribution and spherical shape were prepared. A core-shell structure was evidenced by fluorescence microscopy using fluorescent microbubbles.

View Article and Find Full Text PDF