Publications by authors named "Agnese Abrusci"

In this paper we present a multiscale simulation of charge transport in a solid-state dye-sensitized solar cell, where the real morphology between TiO2 and the hole transport material is included. The geometry of the interface is obtained from an electron tomography measurement and imported in a simulation software. Charge distribution, electric field and current densities are computed using the drift-diffusion model.

View Article and Find Full Text PDF

We investigate the loss mechanisms in hybrid photovoltaics based on blends of poly(3-hexylthiophene) with CdSe nanocrystals of various sizes. By combining the spectroscopic and electrical measurements on working devices as well as films, we identify that high trap-mediated recombination is responsible for the loss of photogenerated charge carriers in devices with small nanocrystals. In addition, we demonstrate that the reduced open-circuit voltage for devices with small nanocrystals is also caused by the traps.

View Article and Find Full Text PDF

In this work we demonstrate hyperbranched nanostructures, grown by pulsed laser deposition, composed of one-dimensional anatase single crystals assembled in arrays of high aspect ratio hierarchical mesostructures. The proposed growth mechanism relies on a two-step process: self-assembly from the gas phase of amorphous TiO2 clusters in a forest of tree-shaped hierarchical mesostructures with high aspect ratio; oriented crystallization of the branches upon thermal treatment. Structural and morphological characteristics can be optimized to achieve both high specific surface area for optimal dye uptake and broadband light scattering thanks to the microscopic feature size.

View Article and Find Full Text PDF

A plethora of solution-processed materials have been developed for solar cell applications. Hybrid solar cells based on light absorbing semiconducting polymers infiltrated into mesoporous TiO2 are an interesting concept, but generating charge at the polymer-metal oxide heterojunction is challenging. Metal-organic perovskite absorbers have recently shown remarkable efficiencies but currently lack the range of color tunability of organics.

View Article and Find Full Text PDF

We present measurements of charge transfer and the photovoltaic effect in a blend of the alternating polyfluorene copolymer poly(2,7-(9,9-dioctyl-fluorene)-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)) with branched CdSe nanoparticles. Quasi-steady-state photoinduced absorption measurements identified a long-lived charged species that formed after photoexcitation at room temperature. Photovoltaic devices based on this blend system showed a spectral response extending to 650 nm and gave a solar power conversion efficiency of 2.

View Article and Find Full Text PDF