The current research is devoted to integrating naturally renewable cardanol derivatives into one-component silyl-terminated-polyether-based prepolymer systems to improve climatic resistance and obtain materials with versatile mechanical properties that could be significant to various sectors of the economy. Various cardanol-type products are used in industries that require high climatic resistance, and thus combining cardanol with commercially available silyl-terminated polyether prepolymers would improve its material climatic resistance, maintaining its market and application value as well as improving material sustainability. The results obtained in this work show that depending on how the cardanol prepolymer Ultra Lite 513 is modified, it is possible to increase the elasticity (670%) or tensile strength (104%) of the material as well as significantly increase the climatic resistance of the material, thus improving the quality and sustainability of the adhesive compared to existing silyl-terminated-prepolymer-based adhesives on the market.
View Article and Find Full Text PDFIn the context of sustainable materials, this study explores the effects of accelerated weathering testing and bacterial biodegradation on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/rapeseed microfiber biocomposites. Accelerated weathering, simulating outdoor environmental conditions, and bacterial biodegradation, representing natural degradation processes in soil, were employed to investigate the changes in the mechanical, thermal and morphological properties of these materials during its post-production life cycle. Attention was paid to the assessment of the change of structural, mechanical and calorimetric properties of alkali and N-methylmorpholine N-oxide (NMMO)-treated rapeseed microfiber (RS)-reinforced plasticized PHBV composites before and after accelerated weathering.
View Article and Find Full Text PDFThe aim of the study was to assess the usefulness of agricultural biomass residues as reinforcement in recycled polymer matrices. In this study, recycled polypropylene and high-density polyethylene composites (rPPPE) filled with three types of biomass residues, sweet clover straws (SCS), buckwheat straws (BS) and rapeseed straws (RS), are presented. The effects of the fiber type and the fibers content on the rheological behavior, mechanical properties (including tensile, flexural and impact strength), thermal stability and moisture absorbance were determined, in addition to morphological analysis.
View Article and Find Full Text PDF