Real-time in-vitro multi-modality characterization of neuronal cell ensemble involves highly complex interdependent phenomena and processes. Although a variety of microelectrode arrays (MEAs) have been reported, diagnosis techniques are limited in term of sensing area, optical transparency, resolution and number of modalities. This paper presents an optically transparent thin-film-transistor (TFT) array biosensor chip for neuronal ensemble investigation, in which TFT electrodes are used for six modalities including extracellular voltage recording of both action potential (AP) and local field potential (LFP), current or voltage stimulation, chemical stimulation, electrical impedance measurement, and optical imaging.
View Article and Find Full Text PDFAlong with the rise of diabetes mellitus issue, glucose sensor has become an imperative tool for healthcare. Studies have been widely conducted on electrode materials for glucose sensors; metal nanoparticles and/or oxide particles in its nano-size are reported to exhibit remarkable electrocatalytic activities in the non-enzymatic glucose sensors. However, the decoration processes of metal nanoparticles or nano-sized oxides are known to be tedious and time-consuming.
View Article and Find Full Text PDFField-effect transistor (FET)-based biosensors have a wide range of applications, and a bio-FET odorant sensor, based on insect (Sf21) cells expressing insect odorant receptors (ORs) with sensitivity and selectivity, has emerged. To fully realize the practical application of bio-FET odorant sensors, knowledge of the cell-device interface for efficient signal transfer, and a reliable and low-cost measurement system using the commercial complementary metal-oxide semiconductor (CMOS) foundry process, will be indispensable. However, the interfaces between Sf21 cells and sensor devices are largely unknown, and electrode materials used in the commercial CMOS foundry process are generally limited to aluminium, which is reportedly toxic to cells.
View Article and Find Full Text PDFThin-Film-Transistors Liquid-Crystal Display has become a standard in the field of displays. However, the structure of these devices presents interest not only in that field, but also for biomedical applications. One of the key components, called here TFT substrate, is a glass substrate with a dense and large array of thousands of transparent micro-electrodes that can be considered as a large scale multi-electrode array(s).
View Article and Find Full Text PDF