Publications by authors named "Agnes Shuk Yee Lo"

Carbonic anhydrase IX (CAIX) is a tumor-associated antigen and marker of hypoxia that is overexpressed on > 90% of clear-cell type renal cell carcinoma (RCC) but not on neighboring normal kidney tissue. Here, we report on the construction of two chimeric antigen receptors (CARs) that utilize a carbonic anhydrase (CA) domain mapped, human single chain antibody (scFv G36) as a targeting moiety but differ in their capacity to provide costimulatory signaling for optimal T cell proliferation and tumor cell killing. The resulting anti-CAIX CARs were expressed on human primary T cells via lentivirus transduction.

View Article and Find Full Text PDF

Background: Adoptive immunotherapy by infusion of designer T cells (dTc) engineered with chimeric antigen receptors (CARs) for tumoricidal activity represents a potentially highly specific modality for the treatment of cancer. In this study, 2nd generation (gen) anti-prostate specific membrane antigen (PSMA) dTc were developed for improving the efficacy of previously developed 1st gen dTc for prostate cancer immunotherapy. The 1st gen dTc are modified with chimeric immunoglobulin-T cell receptor (IgTCR) while the 2nd gen dTc are engineered with an immunoglobulin-CD28-T cell receptor (IgCD28TCR), which incorporates a CD28 costimulatory signal for optimal T cell activation.

View Article and Find Full Text PDF

The successful ex vivo expansion of a large numbers of T cells is a prerequisite for adoptive immunotherapy. In this study, we found that cell density had important effects on the process of expansion of T cells in vitro. Resting T cells were activated to expand at high cell density but failed to be activated at low cell density.

View Article and Find Full Text PDF

Aberrant growth factor production is a prevalent mechanism in tumourigenesis. If T-cells responded positively to a cancer-derived cytokine, this might result in selective enhancement of function within the tumour microenvironment. Here, we have chosen colony-stimulating factor-1 (CSF-1) as a candidate to test this concept.

View Article and Find Full Text PDF

Human cyotsolic malate dehydrogenase (MDH1) is important in transporting NADH equivalents across the mitochondrial membrane, controlling tricarboxylic acid (TCA) cycle pool size and providing contractile function. Cellular localization studies indicate that MDH1 mRNA expression has a strong tissue-specific distribution, being expressed primarily in cardiac and skeletal muscle and in the brain, at intermediate levels in the spleen, kidney, intestine, liver, and testes and at low levels in lung and bone marrow. The observed MDH1 localizations reflect the role of NADH in the support of a variety of functions in different organs.

View Article and Find Full Text PDF