Publications by authors named "Agnes S Klar"

Mesenchymal stem cells (MSCs) are multipotent cells with high self-renewal and multilineage differentiation abilities, playing an important role in tissue healing. Recent advancements in stem cell-based technologies have offered new and promising therapeutic options in regenerative medicine. Upon tissue damage, MSCs are immediately mobilized from the bone marrow and move to the injury site via blood circulation.

View Article and Find Full Text PDF

Studying human skin biology can aid in comprehending the pathophysiology of skin diseases and developing novel cell-based therapies, including tissue engineering approaches. This chapter provides a comprehensive guide of methods to determine human skin samples from the perspective of their cellular compositions. We describe as useful technique the histological analysis of tissue sections.

View Article and Find Full Text PDF

Tissue-engineered skin substitutes (TESS) emerged as a new therapeutic option to improve skin transplantation. However, establishing an adequate and rapid vascularization in TESS is a critical factor for their clinical application and successful engraftment in patients. Therefore, several methods have been applied to improve the vascularization of skin substitutes including (i) modifying the structural and physicochemical properties of dermal scaffolds; (ii) activating biological scaffolds with growth factor-releasing systems or gene vectors; and (iii) developing prevascularized skin substitutes by loading scaffolds with capillary-forming cells.

View Article and Find Full Text PDF

Prenatal surgery for the treatment of spina bifida (myelomeningocele, MMC) significantly enhances the neurological prognosis of the patient. To ensure better protection of the spinal cord by large defects, the application of skin grafts produced with cells gained from the amniotic fluid is presently studied. In order to determine the most appropriate cells for this purpose, we tried to shed light on the extremely complex amniotic fluid cellular composition in healthy and MMC pregnancies.

View Article and Find Full Text PDF

Human keratinocytes play a crucial role during skin wound healing and in skin replacement therapies. The secretome of adipose-derived stem cells (ASCs) has been shown to secrete pro-healing factors, among which include TGF-β1, which is essential for keratinocyte migration and the re-epithelialization of cutaneous wounds during skin wound healing. The benefits of an ASC conditioned medium (ASC-CM) are primarily orchestrated by trophic factors that mediate autocrine and paracrine effects in keratinocytes.

View Article and Find Full Text PDF

Microtia is a congenital disorder that manifests as a malformation of the external ear leading to psychosocial problems in affected children. Here, we present a tissue-engineered treatment approach based on a bioprinted autologous auricular cartilage construct (EarCartilage) combined with a bioengineered human pigmented and prevascularized dermo-epidermal skin substitute (EarSkin) tested in immunocompromised rats. We confirmed that human-engineered blood capillaries of EarSkin connected to the recipient's vasculature within 1 week, enabling rapid blood perfusion and epidermal maturation.

View Article and Find Full Text PDF

Keratinocytes are the predominant cell type of skin epidermis. Through the programmed process of differentiation, they form a cornified envelope that provides a physical protective barrier against harmful external environment. Keratins are major structural proteins of keratinocytes that together with actin filaments and microtubules form the cytoskeleton of these cells.

View Article and Find Full Text PDF

Microtia is a congenital condition of abnormal development of the outer ear. Tissue engineering of the ear is an alternative treatment option for microtia patients. However, for this approach, the identification of high regenerative cartilage progenitor cells is of vital importance.

View Article and Find Full Text PDF

Background: CD146 is a cell adhesion molecule whose expression profile in human skin has not yet been elucidated. Here, we characterize CD146 expression pattern in human skin, in particular in blood endothelial cells (BECs) and lymphatic endothelial cells (LECs), which constitute human dermal microvascular endothelial cells (HDMECs), as well as in perivascular cells.

Results: We demonstrated that CD146 is a specific marker of BECs, but not of LECs.

View Article and Find Full Text PDF

Human skin contains specialized neuroendocrine Merkel cells responsible for fine touch sensation. In the present study, we performed in-depth analysis of Merkel cells in human fetal back skin. We revealed that these Merkel cells expressed cytokeratin 20 (CK20), were positive for the neuroendocrine markers synaptophysin and chromogranin A, and the mechanosensitive ion channel Piezo2.

View Article and Find Full Text PDF

CD157 acts as a receptor, regulating leukocyte trafficking and the binding of extracellular matrix components. However, the expression pattern and the role of CD157 in human blood (BEC) and the lymphatic endothelial cells (LEC) of human dermal microvascular cells (HDMEC), remain elusive. We demonstrated constitutive expression of CD157 on BEC and LEC, in fetal and juvenile/adult skin, in situ, as well as in isolated HDMEC.

View Article and Find Full Text PDF

CD200 is a cell membrane glycoprotein that interacts with its structurally related receptor (CD200R) expressed on immune cells. We characterized CD200-CD200R interactions in human adult/juvenile (j/a) and fetal (f) skin and in in vivo prevascularized skin substitutes (vascDESS) prepared by co-culturing human dermal microvascular endothelial cells (HDMEC), containing both blood (BEC) and lymphatic (LEC) EC. We detected the highest expression of CD200 on lymphatic capillaries in j/a and f skin as well as in vascDESS in vivo, whereas it was only weakly expressed on blood capillaries.

View Article and Find Full Text PDF

It is still unknown whether the human interfollicular epidermis harbors a reservoir of melanocyte precursor cells. Here, we clearly distinguish between three distinct types of melanocytes in human interfollicular epidermis: (1) cKitCD90, (2) cKitCD90, and (3) cKitCD90. Importantly, we identify the Kit tyrosine kinase receptor (cKit) as a marker expressed specifically in mature, melanin-producing melanocytes.

View Article and Find Full Text PDF

CD26, also known as dipeptidyl peptidase IV (DPPIV), is a multifunctional transmembrane protein playing a significant role in the cutaneous wound healing processes in the mouse skin. However, only scarce data are available regarding the distribution and function of this protein in the human skin. Therefore, the aim of this study was to investigate the impact of CD26 deficiency in human primary fibroblasts on the regeneration of human tissue-engineered skin substitutes in vivo.

View Article and Find Full Text PDF

The immune system has a crucial role in skin wound healing and the application of specific cell-laden immunomodulating biomaterials emerged as a possible treatment option to drive skin tissue regeneration. Cell-laden tissue-engineered skin substitutes have the ability to activate immune pathways, even in the absence of other immune-stimulating signals. In particular, mesenchymal stem cells with their immunomodulatory properties can create a specific immune microenvironment to reduce inflammation, scarring, and support skin regeneration.

View Article and Find Full Text PDF

Severe injuries to skin including hypodermis require full-thickness skin replacement. Here, we bioengineered a tri-layered human skin substitute (TLSS) containing the epidermis, dermis, and hypodermis. The hypodermal layer was generated by differentiation of human adipose stem cells (ASC) in a collagen type I hydrogel and combined with a prevascularized dermis consisting of human dermal microvascular endothelial cells and fibroblasts, which arranged into a dense vascular network.

View Article and Find Full Text PDF

Skin is the largest organ of the human body, protecting it against the external environment. Despite high self-regeneration potential, severe skin defects will not heal spontaneously and need to be covered by skin substitutes. Tremendous progress has been made in the field of skin tissue engineering, in recent years, to develop new skin substitutes.

View Article and Find Full Text PDF

Dermal fibroblasts are the main cell type present in skin connective tissue (dermis). Fibroblasts interact with epidermal cells during hair development and in interfollicular skin. Moreover, they play an essential role during cutaneous wound healing and in bioengineering of skin.

View Article and Find Full Text PDF

Purpose: Ultraviolet (UV) radiation adversely affects skin health at cellular and molecular levels. Hence, UV radiation can directly induce inflammatory responses in the dermis by inducing erythema, edema, inflammation, dermal fibroblasts alterations, and extracellular matrix modifications.

Methods: Human keratinocytes, melanocytes, and fibroblasts were isolated from skin biopsies, cultured, and expanded in vitro.

View Article and Find Full Text PDF

Aim Of The Study: The use of autologous bio-engineered dermo-epidermal skin substitutes (DESS) yields a pivotal opportunity to cover large skin defects in human patients. These skin grafts consist of both epidermal and dermal compartments necessary for robust and permanent functional wound closure. In this study, we investigated the impact of mesenchymal cells derived from different body site origins on the expression pattern of diverse markers within DESS.

View Article and Find Full Text PDF

Unlabelled: Molecular and mechanical interactions with the 3D extracellular matrix are essential for cell functions such as survival, proliferation, migration, and differentiation. Thermo-responsive biomimetic polyisocyanopeptide (PIC) hydrogels are promising new candidates for 3D cell, tissue, and organ cultures. This is a synthetic, thermo-responsive and stress-stiffening material synthesized via polymerization of the corresponding monomers using a nickel perchlorate as a catalyst.

View Article and Find Full Text PDF

Aims And Objectives: Vascularized bio-engineered human dermo-epidermal skin substitutes (vascDESS) hold promise for treating burn patients, including those with severe full-thickness wounds. We have previously shown that vascDESS promote wound healing by enhanced influx of macrophages and granulocytes. Immediately following transplantation, macrophages infiltrate the graft and differentiate into a pro-inflammatory (M1) or a pro-healing M2 phenotype.

View Article and Find Full Text PDF

Aims And Objectives: The use of autologous tissue-engineered skin substitutes is a promising approach to cover large skin defects in patients. Preclinical investigation is pivotal to test and improve the quality of these bio-engineered substitutes. In the skin, the epidermis, formed mainly by keratinocytes, provides the first physical barrier protecting from the environment.

View Article and Find Full Text PDF

There is accumulating evidence that interactions between epidermal melanocytes and stromal cells play an important role in the regulation of skin pigmentation. In this study we established a pigmented dermo-epidermal skin model, melDESS, of human origin to investigate the effects of distinct stromal cells on melanogenesis. melDESS is a complex, clinically relevant skin equivalent composed of an epidermis containing both melanocytes and keratinocytes.

View Article and Find Full Text PDF

We developed human dermo-epidermal skin substitutes that are presently applied in phase I and II clinical trials. Here, we used these very same skin equivalents containing melanocytes, named MelSkin, as an experimental skin model. We investigated the effects of ultraviolet B (UVB) irradiation on the skin grafts transplanted on immune-compromised rats.

View Article and Find Full Text PDF