Background: Few studies have assessed the participation of the spine in arm elevation. The primary aim of this exploratory study was to specify spinal movements during unilateral arm elevation.
Methods: We used an EOS imaging system to assess 2D global posture (Sagittal Vertical Axis [SVA], T1 and T9 tilt and Central Sacral Line [CSL]) and segmental spine curves (C3-C7 in the sagittal plane only, and T1-T6, T7-T12 and L1-L5 in the sagittal and frontal planes) for four different left arm elevation levels: in the sagittal (Sa) plane (30°Sa: reference position, 140°Sa and 180°Sa), and in the scapular (Sc) plane (180°Sc), in ten right-handed asymptomatic participants (5 women; mean age 24.
Background: Movement sonification, the use of real-time auditory feedback linked to movement parameters, have been proposed to support rehabilitation. Nevertheless, if promising results have been reported, the effect of the type of sound used has not been studied systematically. The aim of this study was to investigate in a single session the effect of different types of sonification both quantitatively and qualitatively on patients with acquired brain lesions and healthy participants.
View Article and Find Full Text PDFCharacterizing human movement is essential for understanding movement disorders, evaluating progress in rehabilitation, or even analyzing how a person adapts to the use of assistive devices. Thanks to the improvement of motion capture technology, recording human movement has become increasingly accessible and easier to conduct. Over the last few years, multiple methods have been proposed for characterizing inter-joint coordination.
View Article and Find Full Text PDFUpper limb exoskeletons may confer significant mechanical advantages across a range of tasks. The potential consequences of the exoskeleton upon the user's sensorimotor capacities however, remain poorly understood. The purpose of this study was to examine how the physical coupling of the user's arm to an upper limb exoskeleton influenced the perception of handheld objects.
View Article and Find Full Text PDFUnderstanding and quantifying inter-joint coordination is valuable in several domains such as neurorehabilitation, robot-assisted therapy, robotic prosthetic arms, and control of supernumerary arms. Inter-joint coordination is often understood as a consistent spatiotemporal relation among kinematically redundant joints performing functional and goal-oriented movements. However, most approaches in the literature to investigate inter-joint coordination are limited to analysis of the end-point trajectory or correlation analysis of the joint rotations without considering the underlying task; e.
View Article and Find Full Text PDFAfter a major upper limb amputation, the use of myoelectric prosthesis as assistive devices is possible. However, these prostheses remain quite difficult to control for grasping and manipulation of daily life objects. The aim of the present observational case study is to document the kinematics of grasping in a group of 10 below-elbow amputated patients fitted with a myoelectric prosthesis in order to describe and better understand their compensatory strategies.
View Article and Find Full Text PDFWhen human participants repeatedly encounter a velocity-dependent force field that distorts their movement trajectories, they adapt their motor behavior to recover straight trajectories. Computational models suggest that adaptation to a force field occurs at the action selection level through changes in the mapping between goals and actions. The quantitative prediction from these models indicates that early perturbed trajectories before adaptation and late unperturbed trajectories after adaptation should have opposite curvature, i.
View Article and Find Full Text PDFBackground: For many co-manipulative applications, variable damping is a valuable feature provided by robots. One approach is implementing a high viscosity at low velocities and a low viscosity at high velocities. This, however, is proven to have the possibility to alter human natural motion performance.
View Article and Find Full Text PDFBackground: Commercial gaming systems are increasingly being used for stroke rehabilitation; however, their effect on upper-limb recovery versus compensation is unknown.
Objectives: We aimed to compare the effect of upper-limb rehabilitation using interactive gaming (Nintendo Wii) with dose-matched conventional therapy on elbow extension (recovery) and forward trunk motion (compensation) in individuals with chronic stroke. Secondary aims were to compare the effect on (1) clinical tests of impairment and activity, pain and effort, and (2) trajectory kinematics.
Detecting human motion and predicting human intentions by analyzing body signals are challenging but fundamental steps for the implementation of applications presenting human-robot interaction in different contexts, such as robotic rehabilitation in clinical environments, or collaborative robots in industrial fields. Machine learning techniques (MLT) can face the limit of small data amounts, typical of this kind of applications. This paper studies the illustrative case of the reaching movement in 10 healthy subjects and 21 post-stroke patients, comparing the performance of linear discriminant analysis (LDA) and random forest (RF) in: (i) predicting the subject's intention of moving towards a specific direction among a set of possible choices, (ii) detecting if the subject is moving according to a healthy or pathological pattern, and in the case of discriminating the damage location (left or right hemisphere).
View Article and Find Full Text PDFImpairments in dexterous upper limb function are a significant cause of disability following stroke. While the physiological basis of movement deficits consequent to a lesion in the pyramidal tract is well demonstrated, specific mechanisms contributing to optimal recovery are less apparent. Various upper limb interventions (motor learning methods, neurostimulation techniques, robotics, virtual reality, and serious games) are associated with improvements in motor performance, but many patients continue to experience significant limitations with object handling in everyday activities.
View Article and Find Full Text PDFThe purpose of this study was to determine the contributions of feedforward and feedback processes on grip force regulation and object orientation during functional manipulation tasks. One patient with massive somatosensory loss resulting from large fiber sensory neuropathy and 10 control participants were recruited. Three experiments were conducted: ) perturbation to static holding; ) discrete vertical movement; and ) functional grasp and place.
View Article and Find Full Text PDFAnn Phys Rehabil Med
March 2022
Most studies on the regulation of speed and trajectory during ellipse drawing have used visual feedback. We used online auditory feedback (sonification) to induce implicit movement changes independently from vision. The sound was produced by filtering a pink noise with a band-pass filter proportional to movement speed.
View Article and Find Full Text PDFUnderstanding the processes underlying sensorimotor coupling with the environment is crucial for sensorimotor rehabilitation and sensory substitution. In doing so, devices which provide novel sensory feedback consequent to body movement may be optimized in order to enhance motor performance for particular tasks. The aim of the study reported here was to investigate audio-motor coupling when the auditory experience is linked to movements of the head or the hands.
View Article and Find Full Text PDFLimitations with manual dexterity are an important problem for patients suffering from hemiparesis post stroke. Sensorimotor deficits, compensatory strategies and the use of alternative grasping configurations may influence the efficiency of prehensile motor behavior. The aim of the present study is to examine how different grasp configurations affect patient ability to regulate both grip forces and object orientation when lifting, holding and placing an object.
View Article and Find Full Text PDFDue to the limitations of myoelectric control (such as dependence on muscular fatigue and on electrodes shift, difficulty in decoding complex patterns or in dealing with simultaneous movements), there is a renewal of interest in the movement-based control approaches for prosthetics. The latter use residual limb movements rather than muscular activity as command inputs, in order to develop more natural and intuitive control techniques. Among those, several research works rely on the interjoint coordinations that naturally exist in human upper limb movements.
View Article and Find Full Text PDFMost transhumeral amputees report that their prosthetic device lacks functionality, citing the control strategy as a major limitation. Indeed, they are required to control several degrees of freedom with muscle groups primarily used for elbow actuation. As a result, most of them choose to have a one-degree-of-freedom myoelectric hand for grasping objects, a myoelectric wrist for pronation/supination, and a body-powered elbow.
View Article and Find Full Text PDFThis study aimed to identify and qualify grasp-types used by patients with stroke and determine the clinical parameters that could explain the use of each grasp. Thirty-eight patients with chronic stroke-related hemiparesis and a range of motor and functional capacities (17 females and 21 males, aged 25-78), and 10 healthy subjects were included. Four objects were used (tissue packet, teaspoon, bottle and tennis ball).
View Article and Find Full Text PDFAnn Phys Rehabil Med
January 2018
Background: The global range of motion of the arm is the result of a coordinated motion of the shoulder complex including glenohumeral (GH), scapulothoracic, sternoclavicular and acromioclavicular joints.
Methods: This study is a non-systematic review of kinematic patterns in degenerated shoulders. It is a based on our own research on the kinematics of the shoulder complex and clinical experience.
Amputated patients are hardly satisfied with upper limb prostheses, and tend to favour the use of their contralateral arm to partially compensate their disability. This may seem surprising in light of recent evidences that external objects (rubber hand or tool) can easily be embodied, namely incorporated in the body representation. We investigated both implicit body representations (by evaluating the peripersonal space using a reachability judgement task) and the quality of bodily integration of the patient's prosthesis (assessed via questionnaires).
View Article and Find Full Text PDFBackground: The possibility to modify the usually pathological patterns of coordination of the upper-limb in stroke survivors remains a central issue and an open question for neurorehabilitation. Despite robot-led physical training could potentially improve the motor recovery of hemiparetic patients, most of the state-of-the-art studies addressing motor control learning, with artificial virtual force fields, only focused on the end-effector kinematic adaptation, by using planar devices. Clearly, an interesting aspect of studying 3D movements with a robotic exoskeleton, is the possibility to investigate the way the human central nervous system deals with the natural upper-limb redundancy for common activities like pointing or tracking tasks.
View Article and Find Full Text PDF