Publications by authors named "Agnes R"

Aim: To synthesize, characterize, and validate 6FGA, a fluorescent glucose modified with a Cyanine5.5 at carbon-6 position, for probing the function of sodium-dependent glucose transporters, SGLT1 and SGLT2.

Main Methods: The synthesis of fluorescent glucose analogue was achieved through "click chemistry" of Cyanine5.

View Article and Find Full Text PDF

Environmental pollution is one of the main challenges faced by humanity. By their ubiquity and vast range of metabolic capabilities, microorganisms are affected by pollution with consequences on their host organisms and on the functioning of their environment. They also play key roles in the fate of pollutants through the degradation, transformation, and transfer of organic or inorganic compounds.

View Article and Find Full Text PDF

Current clinical staging/grading schemes of endometriosis show poor correlation with clinical symptoms and histopathological confirmation is only in half of the clinically suspected endometriosis. In this study, done over an 8-year period, several histological features were analysed including an attempt to grade the severity of endometriosis histologically based on the number of per low power field. The components in each focus, the phasing of the glands and , the type of glands (endometrial type or undifferentiated type), and features were all analysed.

View Article and Find Full Text PDF

Magnetic resonance imaging (MRI) of glioblastoma multiforme (GBM) with molecular imaging agents would allow for the specific localization of brain tumors. Prior studies using T 1-weighted MR imaging demonstrated that the SBK2-Tris-(Gd-DOTA)3 molecular imaging agent labeled heterotopic xenograft models of brain tumors more intensely than non-specific contrast agents using conventional T 1-weighted imaging techniques. In this study, we used a dynamic quantitative T 1 mapping strategy to more objectively compare intra-tumoral retention of the SBK2-Tris-(Gd-DOTA)3 agent over time in comparison to non-targeted control agents.

View Article and Find Full Text PDF

Targeted drug delivery using epidermal growth factor peptide-targeted gold nanoparticles (EGF-Au NPs) is investigated as a novel approach for delivery of photodynamic therapy (PDT) agents, specifically Pc 4, to cancer. In vitro studies of PDT show that EGF-Au NP-Pc 4 is twofold better at killing tumor cells than free Pc 4 after increasing localization in early endosomes. In vivo studies show that targeting with EGF-Au NP-Pc 4 improves accumulation of fluorescence of Pc 4 in subcutaneous tumors by greater than threefold compared with untargeted Au NPs.

View Article and Find Full Text PDF

We have developed a near-infrared (NIR) probe that targets cells overexpressing the EGF receptor (EGFR) for imaging glioblastoma brain tumors in live subjects. A peptide specific for the EGFR was modified with various lengths of monodiscrete polyethylene glycol (PEG) units and a NIR Cy5.5 fluorescence dye.

View Article and Find Full Text PDF

EGF-modified Au NP-Pc 4 conjugates showed 10-fold improved selectivity to the brain tumor compared to untargeted conjugates. The hydrophobic photodynamic therapy drug Pc 4 can be delivered efficiently into glioma brain tumors by EGF peptide-targeted Au NPs. Compared to the untargeted conjugates, EGF-Au NP-Pc 4 conjugates showed 10-fold improved selectivity to the brain tumor.

View Article and Find Full Text PDF

The conventional design of high affinity drugs targeted to a single molecule has not resulted in clinically useful therapies for pain relief. Recent reviews have suggested that newly designed analgesic drugs should incorporate multiple targets. The distributions of cholecystokinin (CCK) and CCK receptors in the central nervous system (CNS) overlap significantly with endogenous opioid systems and can be dually targeted.

View Article and Find Full Text PDF

A fluorescent sensor of protein kinase activity has been developed and used to characterize the compartmentalized location of cAMP-dependent protein kinase activity in mitochondria. The sensor functions via a phosphorylation-induced release of a quencher from a peptide-based substrate, producing a 150-fold enhancement in fluorescence. The quenching phenomenon transpires via interaction of the quencher with Arg residues positioned on the peptide substrate.

View Article and Find Full Text PDF

Descending input from the rostral ventromedial medulla (RVM) provides positive and negative modulation of spinal nociceptive transmission and has been proposed to be critical for maintaining neuropathic pain. This study tests the hypothesis that neuropathic pain requires the activity of a subset of RVM neurons that are distinguished by co-expression of mu opioid receptor (MOR) and cholecystokinin type 2 receptor (CCK2). Using male Sprague-Dawley rats, we demonstrate that discrete RVM neurons express MOR and CCK2; over 80% of these cells co-express both receptors.

View Article and Find Full Text PDF

Prolonged opioid exposure increases the expression of cholecystokinin (CCK) and its receptors in the central nervous system (CNS), where CCK may attenuate the antinociceptive effects of opioids. The complex interactions between opioid and CCK may play a role in the development of opioid tolerance. We designed and synthesized cyclic disulfide peptides and determined their agonist properties at opioid receptors and antagonist properties at CCK receptors.

View Article and Find Full Text PDF

We have identified compound 1 as a novel ligand for opioid and melanocortin (MC) receptors, which is derived from the overlapping of a well known structure for the delta opioid receptor, 2,6-dimethyltyrosine (Dmt)-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (Tic), and a small molecule for the MC receptor, Tic-DPhe(p-Cl)-piperidin-4-yl-N-phenyl-propionamide. Ligand 1 showed that there is an overlapping pharmacophore between opioid and MC receptors through the Tic residue. The ligand displayed high biological activities at the delta opioid receptor (Ki = 0.

View Article and Find Full Text PDF

The activity of light-activatable ("caged") compounds can be temporally and spatially controlled, thereby providing a means to interrogate intracellular biochemical pathways as a function of time and space. Nearly all caged peptides contain photocleavable groups positioned on the side chains of key residues. We describe an alternative active site targeted strategy that disrupts the interaction between the protein target (SH2 domain, kinase, and proteinase) and a critical amide NH moiety of the peptide probe.

View Article and Find Full Text PDF

New 4-anilidopiperidine analogues in which the phenethyl group of fentanyl was replaced by several aromatic ring-contained amino acids (or acids) were synthesized to study the biological effect of the substituents on mu and delta opioid receptor interactions. These analogues showed broad (47 nM-76 microM) but selective (up to 17-fold) binding affinities at the mu opioid receptor over the delta opioid receptor, as predicted from the message-address concept.

View Article and Find Full Text PDF

Assays that furnish a fluorescent readout of protein kinase activity provide a means to identify and characterize inhibitory agents, assess structure-function relationships, and correlate enzyme activity with cellular behavior. Although several protein kinase sensors have been described in the literature, their fluorescent response to phosphorylation are generally modest to moderate (1.1 – 8-fold).

View Article and Find Full Text PDF

Partially modified retro-inverso, retro, and inverso isomers of hydrazide linked bifunctional peptides were designed, synthesized, and evaluated for bioactivities at delta/mu opioid receptors and CCK-1/CCK-2 receptors. All modifications of the CCK pharmacophore moiety affected bioactivities for the CCK-1 and CCK-2 receptors (up to 180-fold increase in the binding affinity with higher selectivity) and for the delta and mu opioid receptors. The results indicate that the opioid and CCK pharmacophores in one molecule interact with each other to induce topographical changes for both pharmacophores.

View Article and Find Full Text PDF

New modalities providing safe and effective treatment of pain, especially prolonged pathological pain, have not appeared despite much effort. In this mini-review/overview we suggest that new paradigms of drug design are required to counter the underlying changes that occur in the nervous system that may elicit chronic pain states. We illustrate this approach with the example of designing, in a single ligand, molecules that have agonist activity at mu and delta opioid receptors and antagonist activities at cholecystokinin (CCK) receptors.

View Article and Find Full Text PDF

Cholecystokinin (CCK) has been identified as a pronociceptive endogenous peptide which also possesses antiopioid actions. CCK may be upregulated in conditions of chronic pain or during sustained morphine administration resulting in attenuation of opioid-mediated pain relief. These complex interactions between opioids and endogenous CCK receptor systems have suggested the need for a new paradigm in drug design for some states of chronic pain.

View Article and Find Full Text PDF

A series of hydrazide-linked bifunctional peptides designed to act as agonists for delta/mu opioid receptors and antagonists for CCK-1/CCK-2 receptors was prepared and tested for binding to both opioid and CCK receptors and in functional assays. SAR studies in the CCK region examined the structural requirements for the side chain groups at positions 1', 2', and 4' and for the N-terminal protecting group, which are related to interactions not only with CCK, but also with opioid receptors. Most peptide ligands that showed high binding affinities (0.

View Article and Find Full Text PDF

In clinical practice there are several conditions that are at relatively high risk of venous thromboembolism (VTE). However, not all patients included in the high risk category will actually develop VTE, and not all patients in the low risk category are protected against this eventuality. A high risk of VTE is associated with orthopedic or major surgery; a relative risk is associated with laparoscopic surgery, intermediate risk is associated, for instance, with oncology.

View Article and Find Full Text PDF

[structure: see text] External bicyclic beta-turn dipeptide mimetics provide an excellent design approach that can offer a rich chiral ensemble of structures with different backbone conformations. We report herein a novel design of a convergent combinatorial synthetic methodology, which is illustrated by the solid-phase synthesis of a series of [3.3.

View Article and Find Full Text PDF

Disease states such as neuropathic pain offer special challenges in drug design due to the system changes which accompany these diseases. In this manuscript we provide an example of a new approach to drug design in which we have modified a potent and selective peptide ligand for the CCK-2 receptor to a peptide which has potent agonist binding affinity and bioactivity at delta and mu opioid receptors, and simultaneous antagonist activity at CCK receptors. De novo design based on the concept of overlapping pharmacophores was a central hypothesis of this design, and led to compounds such as H-Tyr-DPhe-Gly-DTrp-NMeNle-Asp-Phe-NH(2) (i.

View Article and Find Full Text PDF

The discovery of endogenous opioid peptides 25 years ago opened up a new chapter in efforts to understand the origins and control of pain, its relationships to other biological functions, including inflammatory and other immune responses, and the relationships of opioid peptides and their receptors to a variety of undesirable or toxic side effects often associated with the nonpeptide opiates such as morphine including addiction, constipation, a variety of neural toxicities, tolerance, and respiratory depression. For these investigations the need for potent and highly receptor selective agonists and antagonists has been crucial since they in principle allow one to distinguish unequivocally the roles of the different opioid receptors (mu, delta, and kappa) in the various biological and pathological roles of the opioid peptides and their receptors. Conformational and topographical constraint of the linear natural endogenous opioid peptides has played a major role in developing peptide ligands with high selectivity for mu, delta, and kappa receptors, and in understanding the conformational, topographical, and stereoelectronic structural requirements of the opioid peptides for their interactions with opioid receptors.

View Article and Find Full Text PDF

The Mouse Defense Test Battery (MDTB) has been designed to assess defensive reactions in Swiss-Webster mice to situations associated with a natural predator, the rat. Primary measures taken before, during and after predator confrontation comprise escape attempts, predator assessment, defensive attack and flight. Previous reports from this laboratory have shown that the panic-promoting drug yohimbine potentiated flight behavior, while long-term treatment with the panicolytic agent alprazolam reduced this response.

View Article and Find Full Text PDF