Mycolactone is a lipid-like endotoxin synthesized by an environmental human pathogen, Mycobacterium ulcerans, the causal agent of Buruli ulcer disease. Mycolactone has pleiotropic effects on fundamental cellular processes (cell adhesion, cell death and inflammation). Various cellular targets of mycolactone have been identified and a literature survey revealed that most of these targets are membrane receptors residing in ordered plasma membrane nanodomains, within which their functionalities can be modulated.
View Article and Find Full Text PDFVIsinin-LIke Proteins (VILIPs) are a subfamily of the Neuronal Calcium Sensor (NCS) proteins, which possess both N-myristoylation and EF-hand motifs allowing for a putative 'calcium-myristoyl switch' regulation mechanism. It has previously been established that myristoyl conjugation increases the affinity of proteins for membranes, but, in many cases, a second feature such as a cluster of positively-charged residues is needed for stable membrane binding. The interaction of two members of this family, VILIP-1 and VILIP-3, with Langmuir monolayers as membrane models has been investigated in order to study the effects of both myristoylation and the highly basic region containing conserved poly-lysine residues on membrane association kinetics and binding properties.
View Article and Find Full Text PDFBiological membranes play a central role in the biology of the cell. They are not only the hydrophobic barrier allowing separation between two water soluble compartments but also a supra-molecular entity that has vital structural functions. Notably, they are involved in many exchange processes between the outside and inside cellular spaces.
View Article and Find Full Text PDFThe effect of the ionic liquid 1-ethyl-3-methylimidazolium ethylsulfate ([Emim][EtSO(4)]) on the copper-catalyzed luminol chemiluminescence (CL) is reported. A drastic light emission enhancement is observed, related to a strong interaction between Cu(2+) and the imidazolium ring. In these conditions, the CL reaction was able to produce light efficiently at pH as low as 6.
View Article and Find Full Text PDFThe present study reports the achievement of a new chemiluminescent sensing layer able to simultaneously (i) play an active role on ligand immobilization and (ii) serve as a catalyst in detection processes for label-free biosensor applications. This new type of active Langmuir-Blodgett (LB) monolayer has been designed by using a chelating lipid (Ni-NTA-DOGS). Thanks to the chelated metallic cation, this peculiar lipid exhibits luminol chemiluminescence catalysis properties in the presence of hydrogen peroxide.
View Article and Find Full Text PDFAdv Colloid Interface Sci
November 2005
This review presents the recent advances in the achievement of organized proteo-lipidic nanostructures based on Langmuir-Blodgett technology and their potential applications in the nanobioscience area. By using the self-assembled properties of amphiphilic biomolecules at the air-water interface, the Langmuir-Blodgett (LB) technique offers the possibility to prepare ultrathin layers suitable for biomolecule immobilization at the molecular level. This review will provide a general overview of the enzyme association with preformed Langmuir-Blodgett films in connection with their potential applications in biosensing device developments, and then introduce the design of a new functionalised biomimetic nanostructure with oriented recognition site.
View Article and Find Full Text PDFThis study deals with the kinetics properties of an enzyme immobilised in a defined orientation in a biomimetic environment. For this purpose, acetylcholinesterase (AChE) was captured at the surface of a nanostructured proteo-glycolipidic Langmuir-Blodgett film through specific recognition by a noninhibitor monoclonal antibody (IgG) inserted in a neoglycolipid bilayer. Modelling of this molecular assembly provided a plausible interpretation of the functional orientation of the enzyme.
View Article and Find Full Text PDFThis work presents a new approach for direct detection of polyelectrolytes at the air-water interface, based on the investigation of the interfacial properties of an active lipidic matrix especially designed for polynucleotide immobilization. A synthetic lipid with a cationic spermine headgroup, DiOctadecylamidoGlycylSpermine (DOGS), was spread at the interface to form a distortable film able to capture polynucleotides. The control of the organization state of this functionalized monolayer upon compression was achieved by recording surface pressure-area (pi-A) isotherm diagrams, presenting a specific shape with a typical liquid expanded-liquid condensed phase transition on a pure water subphase.
View Article and Find Full Text PDFThe insertion of immunoglobulin (IgG) in a glycolipid monolayer was achieved by using the ability of new proteo-glycolipid vesicles to disintegrate into a mixed IgG-glycolipid interfacial film after spreading at an air-buffer interface. The interfacial disintegration kinetics was shown to be directly dependent on the initial vesicle surface density and on the buffer ionic strength. The presence of the immunoglobulin in the glycolipid film was displayed by an increase of the lateral compressibility (Cs) during monolayer compression.
View Article and Find Full Text PDF