Publications by authors named "Agnes Mihalyi"

This review covers recent developments in the inhibition of translocase MraY and related phospho-GlcNAc transferases WecA and TagO, and insight into the inhibition and catalytic mechanism of this class of integral membrane proteins from the structure of Aquifex aeolicus MraY. Recent studies have also identified a protein-protein interaction site in Escherichia coli MraY, that is targeted by bacteriophage ϕX174 lysis protein E, and also by cationic antimicrobial peptides containing Arg-Trp close to their N- or C-termini.

View Article and Find Full Text PDF

Naturally occurring muraymycin nucleoside antibiotics represent a promising class of novel antibacterial agents. The structural complexity suggests the investigation of simplified analogues as potential lead structures, which can then be further optimized towards highly potent antimicrobials. Herein we report studies on muraymycin-derived potential lead structures lacking an aminoribose motif found in most naturally occurring muraymycins.

View Article and Find Full Text PDF

The pacidamycin and muraymycin uridyl peptide antibiotics show some structural resemblance to an Arg-Trp-x-x-Trp sequence motif for protein-protein interaction between bacteriophage ϕX174 protein E and E. coli translocase MraY. Members of the UPA class, and a synthetic uridine-peptide analogue, were found to show reduced levels of inhibition to F288L or E287A mutant MraY enzymes, implying that the UPAs interact at this extracellular site as part of the enzyme inhibition mechanism.

View Article and Find Full Text PDF

The National Cancer Institute (NCI) Diversity Set was screened for potential inhibitors of phospho-MurNAc-pentapeptide translocase MraY from Escherichia coli using a primary fluorescence enhancement assay, followed by a secondary radiochemical assay. One new MraY inhibitor was identified from this screen, a naphthylisoquinoline alkaloid michellamine B, which inhibited E. coli MraY (IC50 456μM) and Bacillus subtilis MraY (IC50 386μM), and which showed antimicrobial activity against B.

View Article and Find Full Text PDF

Translocase MraY is the site of action of lysis protein E from bacteriophage ϕX174. Previous genetic studies have shown that mutation F288L in transmembrane helix 9 of E. coli MraY confers resistance to protein E.

View Article and Find Full Text PDF