Publications by authors named "Agnes Lapotre"

Unilateral vestibular loss (UVL) induces a characteristic vestibular syndrome composed of various posturo-locomotor, oculomotor, vegetative and perceptivo-cognitive symptoms. Functional deficits are progressively recovered over time during vestibular compensation, that is supported by the expression of multiscale plasticity mechanisms. While the dynamic of post-UVL posturo-locomotor and oculomotor deficits is well characterized, the expression over time of the cognitive deficits, and in particular spatial memory deficits, is still debated.

View Article and Find Full Text PDF

We previously reported adult reactive neurogliogenesis in the deafferented vestibular nuclei following unilateral vestibular neurectomy (UVN) in the feline and the rodent model. Recently, we demonstrated that UVN induced a significant increase in a population of cells colocalizing the transcription factor sex determining region Y-box 2 (SOX2) and the glial fibrillary acidic protein (GFAP) three days after the lesion in the deafferented medial vestibular nucleus. These two markers expressed on the same cell population could indicate the presence of lesion-reactive multipotent neural stem cells in the vestibular nuclei.

View Article and Find Full Text PDF

Unilateral vestibular loss (UVL) induces a vestibular syndrome composed of posturo-locomotor, oculomotor, vegetative, and perceptivo-cognitive symptoms. With time, these functional deficits progressively disappear due to a phenomenon called vestibular compensation, known to be supported by the expression in the deafferented vestibular nuclei (VNs) of various adaptative plasticity mechanisms. UVL is known to induce a neuroinflammatory response within the VNs, thought to be caused by the structural alteration of primary vestibular afferents.

View Article and Find Full Text PDF

Unilateral vestibular lesions induce a vestibular syndrome, which recovers over time due to vestibular compensation. The therapeutic effect of L-Thyroxine (L-T4) on vestibular compensation was investigated by behavioral testing and immunohistochemical analysis in a rat model of unilateral vestibular neurectomy (UVN). We demonstrated that a short-term L-T4 treatment reduced the vestibular syndrome and significantly promoted vestibular compensation.

View Article and Find Full Text PDF

Acute peripheral vestibulopathy leads to a cascade of symptoms involving balance and gait disorders that are particularly disabling for vestibular patients. Vestibular rehabilitation protocols have proven to be effective in improving vestibular compensation in clinical practice. Yet, the underlying neurobiological correlates remain unknown.

View Article and Find Full Text PDF

1-Methyl-4-phenyl-pyridine ion (MPP+), the active metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induces a Parkinsonian syndrome in humans and animals, a neurotoxic effect postulated to derive from oxidative stress. We report here the first investigation of MPP+-induced oxidative stress in the murine neuroblastoma cell line N2A. Significant cell death was observed following exposure to 0.

View Article and Find Full Text PDF

The histone deacetylase inhibitor sodium butyrate induces several gene products that modify cellular metabolism. Here, we investigated its ability to modulate glutathione-related detoxification enzymes in the breast cancer cell line MCF-7 and a derivative resistant to vincristine (VCREMS). We found that sodium butyrate induced glutathione S-transferase and glutathione-dependent peroxidase activities and triggered glutathione depletion.

View Article and Find Full Text PDF