Publications by authors named "Agnes Keszler"

Red light (670 nm) energy controls vasodilation via the formation of a transferable endothelium-derived nitric oxide (NO)-precursor-containing substance, its intracellular traffic, and exocytosis. Here we investigated the underlying mechanistic effect of oxidative stress on light-mediated vasodilation by using pressure myography on dissected murine arteries and immunofluorescence on endothelial cells. Treatment with antioxidants Trolox and catalase decreased vessel dilation.

View Article and Find Full Text PDF

We have previously established that 670 nm energy induces relaxation of blood vessels via an endothelium derived S-nitrosothiol (RSNO) suggested to be embedded in vesicles. Here, we confirm that red light facilitates the exocytosis of this vasodilator from cultured endothelial cells and increases ex vivo blood vessel diameter. Ex vivo pressurized and pre-constricted facial arteries from C57Bl6/J mice relaxed 14.

View Article and Find Full Text PDF

Nitric oxide dependent vasodilation is an effective mechanism for restoring blood flow to ischemic tissues. Previously, we established an murine model whereby red light (670 nm) facilitates vasodilation an endothelium derived vasoactive species which contains a functional group that can be reduced to nitric oxide. In the present study we investigated this vasodilator by measuring blood flow with Laser Doppler Perfusion imaging in mice.

View Article and Find Full Text PDF

Preeclampsia is a serious pregnancy disorder which in extreme cases may lead to maternal and fetal injury or death. Preexisting conditions which increase oxidative stress, e.g.

View Article and Find Full Text PDF

Red light (670 nm) promotes ex vivo dilation of blood vessels in a nitric oxide (NO) dependent, but eNOS independent manner by secreting a quasi-stable and transferable vasoactive substance with the characteristics of S-nitrosothiols (RSNO) from the endothelium. In the present work we establish that 670 nm light mediated vasodilation occurs in vivo and is physiologically stable. Light exposure depletes intracellular S-nitroso protein while concomitantly increasing extracellular RNSO, suggesting vesicular pathways are involved.

View Article and Find Full Text PDF

There is significant therapeutic advantage of nitric oxide synthase (NOS) independent nitric oxide (NO) production in maladies where endothelium, and thereby NOS, is dysfunctional. Electromagnetic radiation in the red and near infrared region has been shown to stimulate NOS-independent but NO-dependent vasodilation, and thereby has significant therapeutic potential. We have recently shown that red light induces acute vasodilatation in the pre-constricted murine facial artery via the release of an endothelium derived substance.

View Article and Find Full Text PDF

Far red/near infrared (R/NIR) energy is a novel therapy, but its mechanism of action is poorly characterized. Cytochrome c oxidase (Cco) of the mitochondrial electron transport chain is considered the primary photoacceptor for R/NIR to photolyze a putative heme nitrosyl in Cco to liberate free nitric oxide (NO). We previously observed R/NIR light directly liberates NO from nitrosylated hemoglobin and myoglobin, and recently suggested S-nitrosothiols (RSNO) and dinitrosyl iron complexes (DNIC) may be primary sources of R/NIR-mediated NO.

View Article and Find Full Text PDF

Peripheral artery disease (PAD) is a morbid condition whereby ischemic peripheral muscle causes pain and tissue breakdown. Interestingly, PAD risk factors, e.g.

View Article and Find Full Text PDF

Dinitrosyl iron complexes (DNIC) spontaneously form in aqueous solutions of Fe(II), nitric oxide (NO), and various anions. They exist as an equilibrium between diamagnetic, dimeric (bi-DNIC) and paramagnetic, monomeric (mono-DNIC) forms. Thiolate groups (e.

View Article and Find Full Text PDF

Changes in oxidative capacities and phospholipid remodeling accompany temperature acclimation in ectothermic animals. Both responses may alter redox status and membrane susceptibility to lipid peroxidation (LPO). We tested the hypothesis that phospholipid remodeling is sufficient to offset temperature-driven rates of LPO and, thus, membrane susceptibility to LPO is conserved.

View Article and Find Full Text PDF

Far red/near-infrared light (NIR) promotes a wide range of biological effects including tissue protection but whether and how NIR is capable of acutely protecting myocardium against ischemia and reperfusion injury in vivo is not fully elucidated. Our previous work indicates that NIR exposure immediately before and during early reperfusion protects the myocardium against infarction through mechanisms that are nitric oxide (NO)-dependent. Here we tested the hypothesis that NIR elicits protection in a diabetic mouse model where other cardioprotective interventions such as pre- and postconditioning fail, and that the protection is independent of nitric oxide synthase (NOS).

View Article and Find Full Text PDF

Background: S-nitrosothiols have been recognized as biologically-relevant products of nitric oxide that are involved in many of the diverse activities of this free radical.

Scope Of Review: This review serves to discuss current methods for the detection and analysis of protein S-nitrosothiols. The major methods of S-nitrosothiol detection include chemiluminescence-based methods and switch-based methods, each of which comes in various flavors with advantages and caveats.

View Article and Find Full Text PDF

S-nitrosothiols are products of nitric oxide (NO) metabolism that have been implicated in a plethora of signalling processes. However, mechanisms of S-nitrosothiol formation in biological systems are uncertain, and no efficient protein-mediated process has been identified. Recently, we observed that ferric cytochrome c can promote S-nitrosoglutathione formation from NO and glutathione by acting as an electron acceptor under anaerobic conditions.

View Article and Find Full Text PDF

Normally, cell free haemoglobin is bound by haptoglobin and efficiently cleared. However, the chronic haemolysis in sickle cell disease (SCD) overwhelms haptoglobin binding capacity and protein turnover, resulting in elevated cell free haemoglobin. Cell free haemoglobin acts as both a scavenger of vasoactive nitric oxide and a pro-oxidant.

View Article and Find Full Text PDF

Although S-nitrosothiols are regarded as important elements of many NO-dependent signal transduction pathways, the physiological mechanism of their formation remains elusive. Here, we demonstrate a novel mechanism by which cytochrome c may represent an efficient catalyst of S-nitrosation in vivo. In this mechanism, initial binding of glutathione to ferric cytochrome c is followed by reaction of NO with this complex, yielding ferrous cytochrome c and S-nitrosoglutathione (GSNO).

View Article and Find Full Text PDF

The reaction between NO, thiols, and oxygen has been studied in some detail in vitro due to its perceived importance in the mechanism of NO-dependent signal transduction. The formation of S-nitrosothiols and thiol disulfides from this chemistry has been suggested to be an important component of the biological chemistry of NO, and such subsequent thiol modifications may result in changes in cellular function and phenotype. In this study we have reinvestigated this reaction using both experiment and simulation and conclude that: (i) S-nitrosation through radical and nonradical pathways is occurring simultaneously, (ii) S-nitrosation through direct addition of NO to thiol does not occur to any meaningful extent, and (iii) protein hydrophobic environments do not catalyze or enhance S-nitrosation of either themselves or of glutathione.

View Article and Find Full Text PDF

Nitric oxide is an important messenger in numerous biological processes, such as angiogenesis, hypoxic vasodilation, and cardioprotection. Although nitric oxide synthases (NOS) produce the bulk of NO, there is increasing interest in NOS independent generation of NO in vivo, particularly during hypoxia or anoxia, where low oxygen tensions limit NOS activity. Interventions that can increase NO bioavailability have significant therapeutic potential.

View Article and Find Full Text PDF

Nitric oxide (NO*) participates in the regulation of a wide array of biological processes and its deficit contributes to the severity of many diseases. Recently, a role of NO deficiency that occurs as a result of intravascular hemolysis and increases in levels of cell-free hemoglobin in the pathway of chronic anemic pathologies has been suggested. Experimental evidence for deoxyhemoglobin-catalyzed reduction of nitrite to NO* leads to the possibility of nitrite infusion-based therapies to correct NO* deficits.

View Article and Find Full Text PDF

The nitrite anion (NO(-)(2)) has recently received much attention as an endogenous nitric oxide source that has the potential to be supplemented for therapeutic benefit. One major mechanism of nitrite reduction is the direct reaction between this anion and the ferrous heme group of deoxygenated hemoglobin. However, the reaction of nitrite with oxyhemoglobin (oxyHb) is well established and generates nitrate and methemoglobin (metHb).

View Article and Find Full Text PDF

This review discusses proteomic methods to detect and identify S-nitrosated proteins. Protein S-nitrosation, the post-translational modification of thiol residues to form S-nitrosothiols, has been suggested to be a mechanism of cellular redox signaling by which nitric oxide can alter cellular function through modification of protein thiol residues. It has become apparent that methods that will detect and identify low levels of S-nitrosated protein in complex protein mixtures are required in order to fully appreciate the range, extent and selectivity of this modification in both physiological and pathological conditions.

View Article and Find Full Text PDF

The reaction of nitrite with hemoglobin has become of increasing interest due to the realization that plasma nitrite may act as an NO congener that is activated by interaction with red blood cells. Using a combination of spectrophotometry, immuno-spin trapping, and EPR, we have examined the formation of radicals during the oxidation of oxyhemoglobin (oxyHb) and oxymyoglobin (oxyMb) by inorganic nitrite. The proposed intermediacy of ferryl species during this oxidation was confirmed by spectrophotometry using multiple linear regression analysis of kinetic data.

View Article and Find Full Text PDF

Recent evidence suggests that the reaction between nitrite and deoxygenated hemoglobin provides a mechanism by which nitric oxide is synthesized in vivo. This reaction has been previously defined to follow second order kinetics, although variable product stoichiometry has been reported. In this study we have re-examined this reaction and found that under fully deoxygenated conditions the product stoichiometry is 1:1 (methemoglobin:nitrosylhemoglobin), and unexpectedly, the kinetics deviate substantially from a simple second order reaction and exhibit a sigmoidal profile.

View Article and Find Full Text PDF

S-Nitrosation of protein cysteinyl residues has been suggested to be an important nitric oxide-dependent posttranslational modification. The so-called biotin-switch method has been developed to identify S-nitrosated proteins. This method relies on the selective reduction of S-nitrosothiols by ascorbate.

View Article and Find Full Text PDF

We determined whether isoflurane can confer delayed cardioprotection in the adult rat by triggering increased production of reactive oxygen (ROS) and nitrogen species (RNS). Our objectives were to determine 1) the concentration of isoflurane that confers delayed cardioprotection in the adult rat, 2) the role of ROS and RNS in the induction of delayed cardioprotection, and 3) the cellular sources of ROS and RNS responsible for induction of delayed cardioprotection by isoflurane. Male Sprague-Dawley rats at 8 wk of age (n = 8 rats/group) were exposed to 0.

View Article and Find Full Text PDF