Publications by authors named "Agnes J Huber"

We have previously demonstrated storage of ice-free cryopreserved heart valves at -80°C without the need for liquid nitrogen, with the aims of decreasing manufacturing costs and reducing employee safety hazards. The objectives of the present study were a further simplification of the ice-free cryopreservation method and characterization of tissue viability. Porcine pulmonary heart valves were permeated with an 83% cryoprotectant solution (VS83) followed by rapid cooling and storage at -80°C.

View Article and Find Full Text PDF

The aim of the present study was to characterize the hemocompatibility of ice-free cryopreserved heart valves in anticipation of future human trials. Porcine pulmonary heart valves were infiltrated with either an 83 % cryoprotectant solution followed by rapid cooling and storage at --80 °C or with 10 % DMSO and control rate freezing to --80 °C and storage in vapor phase nitrogen as conventional frozen controls. Cryopreserved leaflets were compared with fresh, decellularized and glutaraldehyde-fixed control valve leaflets using a battery of coagulation protein assays after exposure to human blood.

View Article and Find Full Text PDF

In vivo self-endothelialization by endothelial cell adhesion on cardiovascular implants is highly desirable. DNA-oligonucleotides are an intriguing coating material with nonimmunogenic characteristics and the feasibility of easy and rapid chemical fabrication. The objective of this study was the creation of cell adhesive DNA-oligonucleotide coatings on vascular implant surfaces.

View Article and Find Full Text PDF

Objective: Arterial allografts are routinely employed for reconstruction of infected prosthetic grafts. Usually, banked cryopreserved arteries are used; however, existing conventional freezing cryopreservation techniques applied to arteries are expensive. In contrast, a new ice-free cryopreservation technique results in processing, storage and shipping methods that are technically simpler and potentially less costly.

View Article and Find Full Text PDF

Transplantation of cryopreserved heart valves (allografts) is limited by immune responses, inflammation, subsequent structural deterioration and an expensive infrastructure. In previous studies we demonstrated that conventional frozen cryopreservation (FC) is accompanied by serious alterations of extracellular matrix (ECM) structures. As the main culprit of the observed damages ice crystal formation was identified.

View Article and Find Full Text PDF

Long-term function of biological heart valve prostheses (BHV) is limited by structural deterioration leading to failure with associated arterial hypertension. The objective of this work was development of an easy to handle real-time pulse reactor for evaluation of biological and tissue engineered heart valves under different pressures and long-term conditions. The pulse reactor was made of medical grade materials for placement in a 37 degrees C incubator.

View Article and Find Full Text PDF