Jasmonate (JA) is an important hormone involved in regulating diverse responses to environmental factors as well as growth and development, and its signalling is influenced by other hormones such as ethylene (ET). However, our understanding of the regulatory relationship between the JA and ET signalling pathways is limited. In this study, we isolated an Arabidopsis JA-hypersensitive mutant, jah3 (jasmonate hypersensitive3)-1.
View Article and Find Full Text PDFThe jasmonates (JAs) comprise a family of plant hormones that regulate several developmental processes and mediate responses to various abiotic and biotic stresses, including pathogens. JA signalling is manipulated by several strains of the bacterial pathogen Pseudomonas syringae, including P. syringae strain DC3000, using the virulence factor coronatine (COR) as a mimic of jasmonyl-L-isoleucine (JA-Ile).
View Article and Find Full Text PDFGibberellic acid (GA) promotes germination, stem/hypocotyl elongation, and leaf expansion during seedling development. Using activation-tagging mutagenesis, we identified a mutation, sob2-D (for suppressor of phytochromeB-4 [phyB-4]#2 dominant), which suppresses the long-hypocotyl phenotype of a phyB missense allele, phyB-4. This mutant phenotype is caused by the overexpression of an APETALA2 transcription factor, SOB2, also called DRN-like.
View Article and Find Full Text PDF