A radiological/nuclear (RAD-NUC) incident, especially in an urban setting, results in diverse radiation-induced injuries due to heterogeneities in dose, the extent of partial-body shielding, human biodiversity and pre-existing health conditions. For example, acute radiation syndrome (ARS) can result in death within days to weeks of exposure to 0.7-10 Gy doses and is associated with destruction of the bone marrow, known as hematopoietic ARS (H-ARS).
View Article and Find Full Text PDFThoracic exposure to ionizing radiation can lead to delayed injuries to the heart and lung that are serious and even life-threatening. These injuries are difficult to predict since they manifest over many weeks and months. To identify noninvasive, tissue-specific biomarkers for the early detection of late radiation injury, circulating microRNA (miRNA) levels were measured in non-human primates (NHP, Macaca mulatta) that received a single exposure of whole-thorax lung irradiation (WTLI) at a dose likely to result in 20% or 75% mortality within 180 days (9.
View Article and Find Full Text PDFAcute radiation exposure of the thorax can lead to late serious, and even life-threatening, pulmonary and cardiac damage. Sporadic in nature, late complications tend to be difficult to predict, which prompted this investigation into identifying non-invasive, tissue-specific biomarkers for the early detection of late radiation injury. Levels of circulating microRNA (miRNA) were measured in C3H and C57Bl/6 mice after whole thorax irradiation at doses yielding approximately 70% mortality in 120 or 180 days, respectively (LD70/120 or 180).
View Article and Find Full Text PDFNormal long-term repopulating somatic stem cells (SSCs) preferentially divide asymmetrically, with one daughter cell remaining in the niche and the other going on to be a transient amplifying cell required for generating new tissue in homeostatic maintenance and repair processes, whereas cancer stem cells (CSCs) favor symmetric divisions. We have previously proposed that differential β-catenin modulation of transcriptional activity via selective interaction with either the Kat3 coactivator CBP or its closely related paralog p300, regulates symmetric versus asymmetric division in SSCs and CSCs. We have previously demonstrated that SSCs that divide asymmetrically per force retain one of the dividing daughter cells in the stem cell niche, even when treated with specific CBP/β-catenin antagonists, whereas CSCs can be removed from their niche via forced stochastic symmetric differentiative divisions.
View Article and Find Full Text PDFDevelopment of biomarkers capable of estimating absorbed dose is critical for effective triage of affected individuals after radiological events. Levels of cell-free circulating miRNAs in plasma were compared for dose-response analysis in non-human primates (NHP) exposed to lethal (6.5 Gy) and sub-lethal (1 and 3 Gy) doses over a 7 day period.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2011
Neural stem and progenitor cells undergo an important transition from proliferation to differentiation in the G1 phase of the cell cycle. The mechanisms coordinating this transition are incompletely understood. Cyclin D proteins promote proliferation in G1 and typically are down-regulated before differentiation.
View Article and Find Full Text PDF