The anti-vitamin Ks (AVKs) are widely used to control rodent populations. They inhibit Vitamin K regeneration by the Vitamin K Epoxide Reductase (VKOR) and cause a fatal hemorrhagic syndrome. Because of repeated use, some populations of commensal rodents have expressed resistance to these compounds.
View Article and Find Full Text PDFBackground: Anticoagulant rodenticides are commonly used to control rodent pests all over the world. These pesticides inhibit one enzyme of the vitamin K cycle, Vkorc1, and thus prevent blood clotting and cause death by haemorrhage. Resistance to anticoagulants was first observed in Scotland in 1958, and more potent anticoagulants have been developed to overcome this obstacle.
View Article and Find Full Text PDFObjectives: In humans, warfarin is used as an anticoagulant to reduce the risk of thromboembolic clinical events. Warfarin derivatives are also used as rodenticides in pest control. The gene encoding the protein targeted by anticoagulants is the Vitamin K-2,3-epoxide reductase subunit 1 (VKORC1).
View Article and Find Full Text PDFVitamin K epoxide reductase (VKOR) activity in liver microsomes from a susceptible and a genetically warfarin-resistant strain of mice (Mus Musculus domesticus) was analyzed to determine the mechanism of resistance to this 4-hydroxycoumarin derivative. Kinetic parameters for VKOR were calculated for each strain by incubating liver microsomes with vitamin K epoxide +/- warfarin. In susceptible mice, an Eadie-Hofstee plot of the data was not linear and suggested the involvement of at least two different components.
View Article and Find Full Text PDF