Publications by authors named "Agnes Csaki"

Objectives: The study aimed to compare the antibacterial effect of a novel disinfectant, hyper-pure chlorine dioxide (hClO) to sodium hypochlorite (NaOCl) in various depths of dentin tubules.

Materials And Methods: The distal root of the extracted lower molars was infected artificially with Enterococcus faecalis. The control group was rinsed with saline, and the test groups were irrigated with either 5% NaOCl or 0.

View Article and Find Full Text PDF

One hundred and twenty-five years ago there was a lively discussion between Hungarian and Spanish neuroscientists on the nature of neural connections. The question was whether the neurofibrils run from one neuron to the next and connect neurons as a continuous network or the fibrils form an internal skeleton in the neurons and do not leave the cell; however, there is close contact between the neurons. About 50 years later, the invention of the electron microscope solved the problem.

View Article and Find Full Text PDF

Ample evidence indicates that in several mammalian species the pineal body contains neurons. In adult white albino rats neurons are not present in the pineal body; however, in perinatal rats many neurons were described. It was demonstrated that in adult mammalian species the pineal neurons contained some neuropeptides and neurotransmitters such as leu-enkephalin, met-enkephalin, substance-P, somatostatin and γ-aminobutiric acid.

View Article and Find Full Text PDF

It is well established that the adult mammalian pineal body (PB), with the exception of rodents, contains nerve cell bodies. Based on our previous results we have proposed that there is a pinealo-to-retinal neuronal connection in adult hamsters and in prebubertal rats. By the time the animals reached puberty, labeled cells in the PB were not observed in rats.

View Article and Find Full Text PDF

PACAP was discovered 30 years ago in Dr. Akira Arimura's laboratory. In the past three decades since then, it has become evident that this peptide plays numerous crucial roles in mammalian organisms.

View Article and Find Full Text PDF

It was accepted for a long time that in mammals there is only retinofugal neuronal connection between the eye and the pineal body (PB). In our previous paper we described that nerve cells were present in hamster PB and these neurons could establish a reverse connection with the retina through a transsynaptic pathway. In adult albino rats neuronal perikarya were not found.

View Article and Find Full Text PDF

Neuronal chains between the retina and the pineal body were investigated. Transneuronal tracers, retrograde spreading pseudorabies virus (labeled with green fluorescent protein, memGreen-RV) and virus spreading in both ante- and retrograde directions (labeled with red fluorescent protein, Ka-VHS-mCherry-A-RV) were injected into the right eye of vitreous body of intact or bilaterally sympathectomized Wistar male rats. Intact golden hamsters also received memGreen-RV into the eye and Ka-VHS-mCherry-A-RV into the pineal body.

View Article and Find Full Text PDF

By means of double-label immunocytochemistry, authors studied the presence of estrogen receptor α (ER-α) protein in vesicular glutamate transporter 2 (VGluT2) protein-immunoreactive neurons in the female rat hypothalamus and amygdala. They examined colocalization of the 2 immunoreactive proteins in structures in which they found a significant overlap in the localization of the distribution of ER-α- and VGluT2-immunopositive nerve cells, namely in the medial preoptic area, the ventral subdivision of the ventromedial hypothalamic nucleus, and the medial amygdaloid nucleus. In the medial preoptic area, only 2.

View Article and Find Full Text PDF

The hypothalamic suprachiasmatic nucleus (SCN), which plays a pivotal role in the control of circadian rhythms, consists of several neuronal subpopulations characterized by different neuroactive substances. This prominent cell group has a fairly rich glutamatergic innervation, but the cell types that are targeted by this innervation are unknown. Therefore, the purpose of the present study was to examine the relationship between the afferent glutamatergic axon terminals and the vasoactive intestinal polypeptide (VIP)-, arginine-vasopressin (AVP)- and gamma-aminobutyric acid (GABA)-positive neurons of the SCN.

View Article and Find Full Text PDF

The hypothalamic suprachiasmatic nucleus is the key structure of the control of circadian rhythms and has a rich glutamatergic innervation. Besides the presence of glutamatergic afferents, several findings also suggest the existence of glutamatergic efferents from the suprachiasmatic nucleus to its target neurons in various prominent hypothalamic cell groups. However, there is no direct neuromorphological evidence for the presence of glutamatergic neurons in the suprachiasmatic nucleus.

View Article and Find Full Text PDF

Background And Purpose: The hypothalamic suprachiasmatic nucleus functioning as the principal circadian pacemaker in mammals, has a rich glutamatergic innervation. Nothing is known about the terminations of the glutamatergic fibres. The aim of the present investigations was to study the relationship between glutamatergic axon terminals and vasoactive intestinal polypeptide (VIP), GABA and arginine-vasopressin (AVP) neurons in the cell group.

View Article and Find Full Text PDF

Growth hormone-releasing hormone (GHRH) and somatostatin are the two main hypothalamic neurohormones, which stimulate or inhibit directly hypophysial growth hormone (GH) release. Majority of the GHRH neurons projecting to the median eminence is situated in the arcuate nucleus and the somatostatin neurons in the anterior periventricular nucleus. Data suggest that the excitatory amino acid glutamate may play an important role in the control of hypothalamic neuroendocrine neurons and processes including the control of GH.

View Article and Find Full Text PDF

Abstract The hypothalamic arcuate nucleus contains a number of neurochemically different cell populations, among others neuropeptide Y (NPY)- and pro-opiomelanocortin (POMC)-derived peptide-expressing neurons; both are involved in the regulation of feeding and energy homeostasis, NPY neurons also in the release of hypophysiotropic hormones, sexual behaviour and thermogenesis. Recent observations indicate that there is a dense plexus of glutamatergic fibres in the arcuate nucleus. The aim of the present studies was to examine the relationship of these fibres to the NPY and POMC neurons in the arcuate nucleus.

View Article and Find Full Text PDF

Little is known about the neurochemical features of the nucleus reuniens thalami (RE). In the present study, immunocytochemical experiments were performed to characterize the expression pattern of certain neurochemical markers, e.g.

View Article and Find Full Text PDF