Secondary compounds of grassland and forage plant species such as vitamins or phenolic compounds are involved in different health-promoting effects in animals. However, information on their concentration and composition in forage plant species remains scarce. The objective of this study was to characterize the composition of secondary compounds of seven grazed cover crop plant species harvested at two stages of growth.
View Article and Find Full Text PDFOlive oil production yields a considerable amount of wastewater, a powerful pollutant that is currently discarded but could be considered as a potential source of valuable natural products due to its content in phenolic compounds and other natural antioxidants. The aim of this work was to explore the variability in olive mill wastewater composition from Algerian olive oil mills considering extraction processes (traditional discontinuous press vs 3-phases centrifugal system) and olive varieties (Azerraj, Sigoise, Chemlal). Whereas pH, dry or organic matter content didn't vary, there was a significant difference in ash content according to extraction process and olive variety.
View Article and Find Full Text PDFPropolis is a product that is rich in phenolic compounds and can be utilized in animal nutrition as a dietary additive. In this study, the effects of a Brazilian green propolis extract on rumen fermentation and gas production were determined. The fate of propolis phenolic compounds in the rumen medium was also investigated.
View Article and Find Full Text PDFBesides supporting cattle feeding, grasslands are home to a diversity of plants and insects that interact with each other by emitting volatile compounds. The aim of this work was to develop a method to determine permanent grassland odorscape and relate it to flower-visiting insects. Two grasslands were chosen for their contrasting levels of botanical diversity, resulting from differing grazing managements.
View Article and Find Full Text PDFThe aim of this work was to characterise new UV-absorbing compounds (UAC) in cow milk in order to gain an overview of the molecular diversity of the minor bioactive constituents, that could be used to trace animal feed or that potentially affect milk quality. UAC were extracted from lyophilized milks, partitioned using SPE C-18 cartridges, purified by semi-preparative HPLC then analysed by HPLC/DAD/HRMS in both ESI(-) and ESI(+) ionisation mode. Compounds that remained unidentified after comparison with UV and MS databases were analysed by 1D and 2D NMR techniques.
View Article and Find Full Text PDFPhenolic compounds contribute to the micronutrient composition of pasture, which in turn may affect animal product composition. To assess the importance and variations in content of these compounds, the polyphenolic and botanical compositions of 24 permanent pastures located in one lowland and two upland regions were studied at equivalent stages of growth. Phenolic fractions were characterized and quantified using HPLC-PDA-ESI-QToF, and the total content was determined by colorimetry over each whole pasture.
View Article and Find Full Text PDFThe first objective of the present paper was to assess the potential of both isotopic ( (18)O/ (16)O in milk water) and molecular biomarkers (terpenes, fatty acids, carotenoids, and vitamins) and milk color to discriminate the production zone (lowland or upland areas) from which 49 tanker bulk milks were collected over one year from a total of 204 farms. The milk water (18)O enrichment was higher in lowland (<500 m altitude) than in upland (>700 m altitude), but the delta (18)O values failed to discriminate systematically the production zone at the scale of the year because of its high variability related to the sampling period. In contrast with vitamins A and E, carotenoids, and milk color measurements, terpenes and fatty acids were confirmed to be relevant tracers of the production zone.
View Article and Find Full Text PDF