The flexibility of DNA is of central importance in biology, medicine, materials science, and mechanical engineering. In this study, we report an unprecedented electrochemical approach for investigating the flexibility of a short (typically 20-base), surface end-tethered single-stranded synthetic DNA oligonucleotide and of its postformed DNA duplex, taking as an example the homopolymer (dT)20 sequence in the regime of very high ionic strength ( approximately 1 M).
View Article and Find Full Text PDF