PURPOSE. The roles of dystrophins in retinal physiology remain elusive. The lack of proper clustering of the potassium channel Kir4.
View Article and Find Full Text PDFThe sarcoglycan-sarcospan (SG-SSPN) complex is part of the dystrophin-glycoprotein complex that has been extensively characterized in muscle. To establish the framework for functional studies of sarcoglycans in retina here, we quantified sarcoglycans mRNA levels with real-time reverse transcriptase-polymerase chain reaction (RT-PCR) and performed immunohistochemistry to determine their cellular and subcellular distribution. We showed that the beta-, delta-, gamma-, epsilon-sarcoglycans and sarcospan are expressed in mouse retina.
View Article and Find Full Text PDFDue to the difference between rodent and human retinal circuitry, we characterize a new animal model of retinal perturbation in neurotransmission in Duchenne Muscular Dystrophy (DMD) patients. We investigated the expression and localization of dystrophin proteins and dystrophin associated proteins in porcine retina by reverse transcription polymerase chain reaction, Western blot analysis and immunohistochemistry. Homologues of human DMD gene products and alternative spliced isoforms of Dp71 were identified.
View Article and Find Full Text PDFRecent reports on rod photoreceptor neuroprotection by Ca2+ channel blockers have pointed out the need to assess the effect of these blockers on mammalian rods. However, in mammals, rod electrophysiological characterization has been hampered by the small size of these photoreceptors, which were instead extensively studied in nonmammalian vertebrates. To further characterize ionic conductances and to assess the pharmacology of Ca2+ channels in mammalian rods, freshly dissociated pig rod photoreceptors were recorded with the whole cell patch-clamp technique.
View Article and Find Full Text PDFThe abnormal retinal neurotransmission observed in Duchenne muscular dystrophy (DMD) patients and in some genotypes of mice lacking dystrophin has been attributed to altered expression of short products of the dystrophin gene. We have investigated the potential role of Dp71, the most abundant C-terminal dystrophin gene product, in retinal electrophysiology. Comparison of the scotopic electroretinograms (ERG) between Dp71-null mice and wild-type (wt) littermates revealed a normal ERG in Dp71-null mice with no significant changes of the b-wave amplitude and kinetics.
View Article and Find Full Text PDF