J Gerontol A Biol Sci Med Sci
February 2020
Photobiomodulation (PBM) enhances muscle repair in aged animals, but its effect on the modulation of the phenotype of immune cells has not yet been determined. Rats (20-month-old) were submitted to cryoinjury of the tibialis anterior muscle and were treated with PBM. After 1, 3, and 7 days, the muscles were submitted to immunohistochemical analysis for the determination of neutrophils and macrophage phenotypes.
View Article and Find Full Text PDFLasers Med Sci
August 2018
The aim of the present study was to evaluate the effects of LLLT prior to muscle injury with and without post-injury irradiation on the expression of isoforms of myosin heavy chain (MyHC), calcineurin (CaN), and myostatin during the repair process. Wistar rats were divided into five groups: control (n = 7); injury (n = 21); LLLT + injury (n = 21); injury + LLLT (n = 21), and LLLT + injury + LLLT (n = 21). Cryoinjury was performed on the tibialis anterior (TA) muscle.
View Article and Find Full Text PDFThe purpose of this study was to evaluate the effects of low-level laser therapy (LLLT) on morphological aspects, IL-6 and IL-1β expressions, as well as the distribution and organization of collagen in the tibialis anterior (TA) muscle of elderly rats submitted to cryoinjury. Histological photomicrographs were taken of TA muscles stained with HE and picrosirius red. Immunohistochemistry was used for the evaluation of IL-6 and IL-1β.
View Article and Find Full Text PDFPLoS One
September 2016
Introduction: Muscle injury is common among athletes and amateur practitioners of sports. Following an injury, the production of reactive oxygen species (ROS) occurs, which can harm healthy muscle fibers (secondary damage) and delay the repair process. Low-level laser therapy (LLLT) administered prior to or following an injury has demonstrated positive and protective effects on muscle repair, but the combination of both administration times together has not been clarified.
View Article and Find Full Text PDFThis study analyzed the effect of pre-injury and post-injury irradiation with low-level laser therapy (LLLT) on the mRNA expression of myogenic regulatory factors and interleukin 6 (IL-6) during the skeletal muscle repair. Male rats were divided into six groups: control group, sham group, LLLT group, injury group; pre-injury LLLT group, and post-injury LLLT group. LLLT was performed with a diode laser (wavelength 780 nm; output power 40 mW' and total energy 3.
View Article and Find Full Text PDFThis study analyzed the effects of light-emitting diode (LED) therapy on the morphology of muscle tissue as well as collagen remodeling and matrix metalloproteinase 2 (MMP-2) activity in the skeletal muscle of rats following acute injury. Wistar rats were divided into four groups: (1) control, (2) sham, (3) untreated cryoinjury, and (4) cryoinjury treated with LED. Cryoinjury was induced by two applications of a metal probe cooled in liquid nitrogen directly onto the belly of the tibialis anterior muscle.
View Article and Find Full Text PDFJ Photochem Photobiol B
December 2015
M1 profile macrophages exert a major influence on initial tissue repair process. Few days after the occurrence of injury, macrophages in the injured region exhibit a M2 profile, attenuate the effects of the M1 population, and stimulate the reconstruction of the damaged tissue. The different effects of macrophages in the healing process suggest that these cells could be the target of therapeutic interventions.
View Article and Find Full Text PDFAim: To evaluate the effect of LLLT (780 nm; 10 J/cm , 40 mW, 3.2 J) prior to injury on the morphological analysis, collagen deposition, and activity of matrix metalloproteinase-2 (MMP-2).
Methods: Wistar rats were divided into groups: control; sham; only LLLT; only muscle injury and LLLT + injury.
Lasers Med Sci
November 2015
Low-level laser irradiation (LLLI) is increasingly used to treat musculoskeletal disorders, with satisfactory results described in the literature. Skeletal muscle satellite cells play a key role in muscle regeneration. The aim of the present study was to evaluate the effect of LLLI on cell viability, creatine kinase (CK) activity, and the expression of myogenic regulatory factors in C2C12 myoblasts during the differentiation process.
View Article and Find Full Text PDFA review of the literature was performed to demonstrate the most current applicability of low-level laser therapy (LLLT) for the treatment of skeletal muscle injuries, addressing different lasers, irradiation parameters, and treatment results in animal models. Searches were performed in the PubMed/MEDLINE, SCOPUS, and SPIE Digital Library databases for studies published from January 2006 to August 2013 on the use of LLLT for the repair of skeletal muscle in any animal model. All selected articles were critically appraised by two independent raters.
View Article and Find Full Text PDFSkeletal muscle myopathy is a common source of disability in diabetic patients. This study evaluated whether low-level laser therapy (LLLT) influences the healing morphology of injured skeletal muscle. Sixty-five male Wistar rats were divided as follows: (1) sham; (2) control; (3) diabetic; (4) diabetic sham; (5) nondiabetic cryoinjured submitted to LLLT (LLLT); (6) diabetic cryoinjured submitted to LLLT (D-LLLT); and (7) diabetic cryoinjured non-treated (D).
View Article and Find Full Text PDFMuscle repair is regulated by growth factors and cytokines. Low-level laser therapy (LLLT) seems to influence acute inflammation and accelerate skeletal muscle repair. This study verifies the effect of LLLT on the expression of IL-1β in the tibialis anterior (TA) muscle of rats following acute injury.
View Article and Find Full Text PDF