As innovative and versatile agents with potential applications in a wide range of fields including medicine, electronics, wastewater treatment, cosmetics, and energy storage devices, magnetic nanoparticles (NPs) are significant attention. However, our knowledge of the harmful effects of different-sized NPs, particularly of their effects on aquatic animals, is limited. In this study, we evaluated the impact of different-sized (sub-2, 5, and 15 nm) cobalt ferrite (CoFeO) NPs on the biological parameters of rainbow trout (Oncorhynchus mykiss) embryos and larvae.
View Article and Find Full Text PDFPhotoluminescent (PL) metal and metal oxide nanoclusters (NCs), with a size of just several nanometers, are a separate class of nanomaterials abundant with new attractive optical, physical, and chemical properties and biocompatibility. However, the synthesis of PL magnetic NCs attachment of PL NCs to iron oxide-based nanoparticles (NPs) is still problematic. Motivated by this, herein, we report the development of a microwave-driven conjugation approach of red-fluorescent gold nanoclusters (BSA@AuNCs) to superparamagnetic NPs.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
September 2019
In this study we examined the influence of ultra-small gold and magnetite‑gold nanoparticles (NPs) stabilized with d,l-methionine, FeO@Au@Met, on their antibacterial efficacy against three of twelve the worst bacterial family members included in the World Health Organization (WHO) list. In particular, gram-negative Acinetobacter baumannii, Salmonella enterica and gram-positive methicillin-resistant Staphylococcus aureus and Micrococcus luteus were tested. Apart from the synthesis, gold species reduction and NP stabilization, an excess of methionine has been used herein to detach ultra-small gold NPs from the FeO@Au@Met surface, collect them and investigate.
View Article and Find Full Text PDFBiocompatible superparamagnetic iron oxide nanoparticles (NPs) through smart chemical functionalization of their surface with fluorescent species, therapeutic proteins, antibiotics, and aptamers offer remarkable potential for diagnosis and therapy of disease sites at their initial stage of growth. Such NPs can be obtained by the creation of proper linkers between magnetic NP and fluorescent or drug probes. One of these linkers is gold, because it is chemically stable, nontoxic and capable to link various biomolecules.
View Article and Find Full Text PDF