Background: With the rapid development of nanotechnology, more and more nanoproducts are being released into the environment where they may both pose ecological risks and be toxic to living organisms. The ecotoxicological impact of quantum dots (QDs), a class of nanoparticles (NPs), on aquatic organisms is becoming an emerging issue, this due to their nano-specific properties, to the physico-chemical transformation in the environment and to the possible release of toxic metals from their structure such as Cd.
Methods: In this work, (i) spectroscopic measurements of commercially available Cd-based QDs (CdSe/ZnS-COOH) were made at various pH values (5.
The water-soluble semiconductor quantum dots (QDs) serve as optically detectable models of nanoparticles and are commonly applied as photoluminescent markers in biological systems. The unicellular algae represent a popular model system suitable to evaluate pollution-induced effects. There is growing experimental evidence that release of metal ions cannot account for potential toxicity of metal containing nanoparticles, however, the underlying mechanisms are not clearly understood.
View Article and Find Full Text PDF