Integration of microsupercapacitors (MSCs) with on-chip sensors and actuators with nanoenergy harvesters can improve the lifetime of wireless sensor nodes in an Internet-of-Things (IoT) architecture. However, to be easy to integrate with such harvester technology, MSCs should be fabricated through a complementary-metal-oxide-semiconductor (CMOS) compatible technology, ubiquitous in electrode choice with the capability of heterogeneous stacking of electrodes for modulation in properties driven by application requirements. In this article, we address both these issues through fabrication of multielectrode modular, high energy density microsupercapacitors (MSC) containing reduced graphene oxide (GO), GO-heptadecane-9-amine (GO-HD9A), rGO-octadecylamine (rGO-ODA), and rGO-heptadecane-9-amine (rGO-HD9A) that stack through a scalable, CMOS compatible, high-wafer-yield spin-coating process.
View Article and Find Full Text PDFWe report an assessment of the influence of both finger geometry and vertically-oriented carbon nanofiber lengths in planar micro-supercapacitors. Increasing the finger number leads to an up-scaling in areal power densities, which increases with scan rate. Growing the nanofibers longer, however, does not lead to a proportional growth in capacitance, proposedly related to limited ion penetration of the electrode.
View Article and Find Full Text PDFOn-chip micro-supercapacitors (MSCs), integrated with energy harvesters, hold substantial promise for developing self-powered wireless sensor systems. However, MSCs have conventionally been manufactured through techniques incompatible with semiconductor fabrication technology, the most significant bottleneck being the electrode deposition technique. Utilization of spin-coating for electrode deposition has shown potential to deliver several complementary metal-oxide-semiconductor (CMOS)-compatible MSCs on a silicon substrate.
View Article and Find Full Text PDFThere is an urgent need to fulfill future energy demands for micro and nanoelectronics. This work outlines a number of important design features for carbon-based microsupercapacitors, which enhance both their performance and integration potential and are critical for complimentary metal oxide semiconductor (CMOS) compatibility. Based on these design features, we present CMOS-compatible, graphene-based microsupercapacitors that can be integrated at the back end of the line of the integrated circuit fabrication.
View Article and Find Full Text PDFMicromachines (Basel)
May 2018
This paper presents a demonstration of the feasibility of fabricating micro-cantilever harvesters with extended stress distribution and enhanced bandwidth by exploiting an M-shaped two-degrees-of-freedom design. The measured mechanical response of the fabricated device displays the predicted dual resonance peak behavior with the fundamental peak at the intended frequency. This design has the features of high energy conversion efficiency in a miniaturized environment where the available vibrational energy varies in frequency.
View Article and Find Full Text PDF