Bread wheat is an important crop for the human diet, but the increasing soil salinization is reducing the yield. The Ca signaling events at the early stages of the osmotic phase of salt stress are crucial for the acclimation response of the plants through the performance of calcium-sensing proteins, which activate or repress transcription factors (TFs) that affect the expression of downstream genes. Physiological, genetic mapping, and transcriptomics studies performed with the contrasting genotypes Syn86 (synthetic, salt-susceptible) and Zentos (elite cultivar, salt-tolerant) were integrated to gain a comprehensive understanding of the salt stress response.
View Article and Find Full Text PDFClimate change causes extreme conditions like prolonged drought, which results in yield reductions due to its effects on nutrient balances such as nitrogen uptake and utilization by plants. Nitrogen (N) is a crucial nutrient element for plant growth and productivity. Understanding the mechanistic basis of nitrogen use efficiency (NUE) under drought conditions is essential to improve wheat (Triticum aestivum L.
View Article and Find Full Text PDFEstimation and prediction play a key role in breeding programs. Currently, phenotyping of complex traits such as nitrogen use efficiency (NUE) in wheat is still expensive, requires high-throughput technologies and is very time consuming compared to genotyping. Therefore, researchers are trying to predict phenotypes based on marker information.
View Article and Find Full Text PDFEstimating the FDR significance threshold in genome-wide association studies remains a major challenge in distinguishing true positive hypotheses from false positive and negative errors. Several comparative methods for multiple testing comparison have been developed to determine the significance threshold; however, these methods may be overly conservative and lead to an increase in false negative results. The local FDR approach is suitable for testing many associations simultaneously based on the empirical Bayes perspective.
View Article and Find Full Text PDFIn cereal crops, environmental fluctuations affect different physiological processes during various developmental phases associated with the formation of yield components. Because these effects are coupled with cultivar-specific phenology, studies investigating environmental responses in different cultivars can give contradictory results regarding key phases impacting yield performance. To dissect how genotype-by-environment interactions affect grain yield in winter wheat, we estimated the sensitivities of yield components to variation in global radiation, temperature and precipitation in 220 cultivars across 81 time-windows ranging from double ridge to seed desiccation.
View Article and Find Full Text PDFBarley is the fourth most cultivated cereal worldwide, and drought is a major cause of its yield loss by negatively affecting its development. Hence, better understanding developmental mechanisms that control complex polygenic yield-related traits under drought is essential to uncover favorable yield regulators. This study evaluated seven above-ground yield-related traits under well-watered (WW) and late-terminal drought (TD) treatment using 534 spring barley multiparent advanced generation intercross double haploid (DH) lines.
View Article and Find Full Text PDFBackground: The frequency of droughts has dramatically increased over the last 50 years, causing yield declines in cereals, including wheat. Crop varieties with efficient root systems show great potential for plant adaptation to drought stress, however; genetic control of root systems in wheat under field conditions is not yet well understood.
Results: Natural variation in root architecture plasticity (phenotypic alteration due to changing environments) was dissected under field-based control (well-irrigated) and drought (rain-out shelter) conditions by a genome-wide association study using 200 diverse wheat cultivars.
The environments where the progenitors are grown have the potential to affect the expression of traits in their offspring. Currently, there are various hypotheses regarding the evolutionary and ecological importance of stress memory effects. There is uncertainty regarding its occurrence, persistence, predictability, and adaptive value.
View Article and Find Full Text PDFUnderstanding the genetic and molecular function of nitrate sensing and acquisition across crop species will accelerate breeding of cultivars with improved nitrogen use efficiency (NUE). Here, we performed a genome-wide scan using wheat and barley accessions characterized under low and high N inputs that uncovered the NPF2.12 gene, encoding a homolog of the Arabidopsis nitrate transceptor NRT1.
View Article and Find Full Text PDFDeveloping stress-tolerant plants continues to be the goal of breeders due to their realized yields and stability. Plant responses to drought have been studied in many different plant species, but the occurrence of stress memory as well as the potential mechanisms for memory regulation is not yet well described. It has been observed that plants hold on to past events in a way that adjusts their response to new challenges without altering their genetic constitution.
View Article and Find Full Text PDFBackground: The transition from vegetative to floral phase is the result of complex crosstalk of exogenous and endogenous floral integrators. This critical physiological event is the response to environmental interaction, which causes biochemical cascades of reactions at different internal tissues, organs, and releases signals that make the plant moves from vegetative status to a reproductive phase. This network controlling flowering time is not deciphered largely in bread wheat.
View Article and Find Full Text PDFBackground: Proline (Pro) and hydrogen peroxide (HO) play a critical role in plants during drought adaptation. Genetic mapping for drought-induced Pro and HO production under field conditions is very limited in crop plants since their phenotyping with large populations is labor-intensive. A genome-wide association study (GWAS) of a diversity panel comprised of 184 bread wheat cultivars grown in natural field (control) and rain-out shelter (drought) environments was performed to identify candidate loci and genes regulating Pro and HO accumulation induced by drought.
View Article and Find Full Text PDFSalt stress is one the most destructive abiotic stressors, causing yield losses in wheat worldwide. A prerequisite for improving salt tolerance is the identification of traits for screening genotypes and uncovering causative genes. Two populations of F lines developed from crosses between sensitive and tolerant parents were tested for salt tolerance at the seedling stage.
View Article and Find Full Text PDFA beneficial root system is crucial for efficient nutrient uptake and stress tolerance. Therefore, evaluating the root system variation for breeding crop plants towards stress adaptation is critically important. Here, we phenotyped root architectural traits of naturally adapted populations from organic and conventional cropping systems under hydroponic and field trails.
View Article and Find Full Text PDFWater deficit is the most severe stress factor in crop production threatening global food security. In this study, we evaluated the genetic variation in photosynthetic traits among 200 wheat cultivars evaluated under drought and rainfed conditions. Significant genotypic, treatments, and their interaction effects were detected for chlorophyll content and chlorophyll fluorescence parameters.
View Article and Find Full Text PDFThe genetic response to changing climatic factors selects consistent across the tested environments and location-specific thermo-sensitive and photoperiod susceptible alleles in lower and higher altitudes, respectively, for starting flowering in winter wheat. Wheat breeders select heading date to match the most favorable conditions for their target environments and this is favored by the extensive genetic variation for this trait that has the potential to be further explored. In this study, we used a germplasm with broad geographic distribution and tested it in multi-location field trials across Germany over three years.
View Article and Find Full Text PDFBackground: In addition to heterogeneity and artificial selection, natural selection is one of the forces used to combat climate change and improve agrobiodiversity in evolutionary plant breeding. Accurate identification of the specific genomic effects of natural selection will likely accelerate transfer between populations. Thus, insights into changes in allele frequency, adequate population size, gene flow and drift are essential.
View Article and Find Full Text PDFWater deficit, which is increasing with climate change, is a serious threat to agricultural sustainability worldwide. Dissection of the genetic architecture of water deficit responses is highly desirable for developing water-deficit tolerant potato cultivars and enhancing the resilience of existing cultivars. This study examined genetic variation in response to water deficit in a panel of diploid potato and identified the QTL governing this trait via a genome-wide association study (GWAS).
View Article and Find Full Text PDFFlag leaf serves as an essential source of assimilates during grain filling, thereby contributing to grain yield up to 48%. Thus, high-throughput phenotyping of flag leaves is crucial to determine their physiological and genetic basis of yield formation and drought adaptation. Here, we utilized 200 wheat cultivars to identify drought-adaptive loci underlying candidate genes associated with flag leaf biomass and photosynthesis-related traits using a genome-wide association study (GWAS).
View Article and Find Full Text PDFDrought is one of the major abiotic stress factors limiting wheat production worldwide, thus threatening food security. The dissection of the genetic footprint of drought stress response offers strong opportunities toward understanding and improving drought tolerance (DT) in wheat. In this study, we investigated the genotypic variability for drought response among 200 diverse wheat cultivars (genotypes) using agronomic, developmental, and grain quality traits (GQT), and conducted genome-wide association studies (GWAS) to uncover the genetic architectures of these important traits.
View Article and Find Full Text PDFMarker assisted breeding, facilitated by reference genome assemblies, can help to produce cultivars adapted to changing environmental conditions. However, anomalous linkage disequilibrium (LD), where single markers show high LD with markers on other chromosomes but low LD with adjacent markers, is a serious impediment for genetic studies. We used a LD-correction approach to overcome these drawbacks, correcting the physical position of markers derived from 15 and 135 K arrays in a diversity panel of bread wheat representing 50 years of breeding history.
View Article and Find Full Text PDFCereals are important crops worldwide that help meet food demands and nutritional needs. In recent years, cereal production has been challenged globally by frequent droughts and hot spells. A plant's root is the most relevant organ for the plant adaptation to stress conditions, playing pivotal roles in anchorage and the acquisition of soil-based resources.
View Article and Find Full Text PDF