ACS Appl Mater Interfaces
July 2023
Hydrogels have been widely used to entrap biomolecules for various biocatalytic reactions. However, solute diffusion in these matrices to initiate such reactions can be a very slow process. Conventional mixing remains a challenge as it can cause irreversible distortion or fragmentation of the hydrogel itself.
View Article and Find Full Text PDFMixing immiscible liquids typically requires the use of auxiliary substances including phase transfer catalysts, microgels, surfactants, complex polymers and nano-particles and/or micromixers. Centrifugally separated immiscible liquids of different densities in a 45° tilted rotating tube offer scope for avoiding their use. Micron to submicron size topological flow regimes in the thin films induce high inter-phase mass transfer depending on the nature of the two liquids.
View Article and Find Full Text PDFShear stress in dynamic thin films, as in vortex fluidics, can be harnessed for generating non-equilibrium conditions, but the nature of the fluid flow is not understood. A rapidly rotating inclined tube in the vortex fluidic device (VFD) imparts shear stress (mechanical energy) into a thin film of liquid, depending on the physical characteristics of the liquid and rotational speed, , tilt angle, , and diameter of the tube. Through understanding that the fluid exhibits resonance behaviours from the confining boundaries of the glass surface and the meniscus that determines the liquid film thickness, we have established specific topological mass transport regimes.
View Article and Find Full Text PDFThe fabrication of hybrid protein-Cu(PO) nanoflowers (NFs) via an intermediate toroidal structure is dramatically accelerated under shear using a vortex fluidic device (VFD), which possesses a rapidly rotating angled tube. As-prepared laccase NFs (LNFs) exhibit ≈1.8-fold increase in catalytic activity compared to free laccase under diffusion control, which is further enhanced by ≈ 2.
View Article and Find Full Text PDFPolysulfone (PSF) was prepared under high shear in a vortex fluidic device (VFD) operating in confined mode, and its properties compared with that prepared using batch processing. This involved reacting the pre-prepared disodium salt of bisphenol A (BPA) with a 4,4'-dihalodiphenylsulfone under anhydrous conditions. Scanning electron microscopy (SEM) established that in the thin film microfluidic platform, the PSF particles are sheet-like, for short reaction times, and fibrous for long reaction times, in contrast to spherical like particles for the polymer prepared using the conventional batch synthesis.
View Article and Find Full Text PDF