Stomatal closure is essential to conserve water and prevent microbial entry into leaves. Alkalinization of guard cells is common during closure by factors such as abscisic acid, methyl jasmonate, and even darkness. Despite reports pointing at the role of cytosolic pH, there have been doubts about whether the guard cell pH change is a cause for stomatal closure or an associated event, as changes in membrane potential or ion flux can modulate the pH.
View Article and Find Full Text PDFPhotorespiration, an essential metabolic component, is a classic example of interactions between the intracellular compartments of a plant cell: the chloroplast, peroxisome, mitochondria, and cytoplasm. The photorespiratory pathway is often modulated by abiotic stress and is considered an adaptive response. Monitoring the patterns of key enzymes located in different subcellular components would be an ideal approach to assessing the modulation of the photorespiratory metabolism under abiotic stress.
View Article and Find Full Text PDFStomatal guard cells are unique in that they have more mitochondria than chloroplasts. Several reports emphasized the importance of mitochondria as the major energy source during stomatal opening. We re-examined their role during stomatal closure.
View Article and Find Full Text PDFUnlabelled: Photorespiration, an essential component of plant metabolism, was upregulated under abiotic stress conditions, such as high light or drought. One of the signals for such upregulation was the rise in reactive oxygen species (ROS). Photorespiration was expected to mitigate oxidative stress by reducing ROS levels.
View Article and Find Full Text PDFWhen plants are exposed to water stress, photosynthesis is downregulated due to enhanced reactive oxygen species (ROS) and nitric oxide (NO). In contrast, photorespiratory metabolism protected photosynthesis and sustained yield. Modulation of photorespiration by ROS was established, but the effect of NO on photorespiratory metabolism was unclear.
View Article and Find Full Text PDFWe examined the patterns of photosynthetic O evolution at 1 mM (optimal) and 10 mM (supra-optimal) bicarbonate in mesophyll protoplasts of Arabidopsis thaliana. The photosynthetic rate of protoplasts reached the maximum at an optimal concentration of 1 mM bicarbonate and got suppressed at supra-optimal levels of bicarbonate. We examined the basis of such photosynthesis inhibition by mesophyll protoplasts at supra-optimal bicarbonate.
View Article and Find Full Text PDFThe effects of drought on photosynthesis have been extensively studied, whereas those on thylakoid organization are limited. We observed a significant decline in gas exchange parameters of pea (Pisum sativum) leaves under progressive drought stress. Chl a fluorescence kinetics revealed the reduction of photochemical efficiency of photosystem (PS)II and PSI.
View Article and Find Full Text PDFspp. (Zingiberaceae) are used as a spice and coloring agent. Their rhizomes and essential oils are known for medicinal properties, besides their use in the flavoring and cosmetic industry.
View Article and Find Full Text PDFPhotorespiration, an essential component of plant metabolism, is concerted across four subcellular compartments, namely, chloroplast, peroxisome, mitochondrion, and the cytoplasm. It is unclear how the pathway located in different subcellular compartments respond to stress occurring exclusively in one of those. We attempted to assess the inter-organelle interaction during the photorespiratory pathway.
View Article and Find Full Text PDFAbscisic acid (ABA) is a stress hormone that accumulates under different abiotic and biotic stresses. A typical effect of ABA on leaves is to reduce transpirational water loss by closing stomata and parallelly defend against microbes by restricting their entry through stomatal pores. ABA can also promote the accumulation of polyamines, sphingolipids, and even proline.
View Article and Find Full Text PDFModulation by salicylic acid (SA) and its six esters of stomatal closure was evaluated in Arabidopsis thaliana. The seven compounds tested are salicylic acid (SA), acetylsalicylate (ASA), methyl salicylate (MeSA), propyl salicylate (PrSA), amyl salicylate, benzyl salicylate, and salicin. Among these, MeSA was the most effective to induce stomatal closure, followed by salicin and SA, while ASA was the least effective.
View Article and Find Full Text PDFEthnopharmacological Relevance: Withania somnifera L. (Solanaceae), commonly known as Ashwagandha or Indian ginseng, is used in Ayurveda (Indian system of traditional medicine) for vitality, cardio-protection and treating other ailments, such as neurological disorders, gout, and skin diseases.
Aim Of The Review: We present a critical overview of the information on the metabolomics of W.
Reports on the effect of nitric oxide (NO) or reactive oxygen species (ROS) on photosynthesis and respiration in leaf tissues are intriguing; therefore, the effects of exogenous addition of sodium nitroprusside (SNP, releases NO) or HO on the photosynthetic O evolution and respiratory O uptake by mesophyll protoplasts in pea (Pisum sativum) were evaluated in the present study. Low concentrations of SNP or HO were used to minimize nonspecific effects. The effects of NO or HO on respiration and photosynthesis were different.
View Article and Find Full Text PDFDrought is one of the abiotic stresses which impairs the plant growth/development and restricts the yield of many crops throughout the world. Stomatal closure is a common adaptation response of plants to the onset of drought condition. Stomata are microscopic pores on the leaf epidermis, which regulate the transpiration/CO uptake by leaves.
View Article and Find Full Text PDFOxidative stress can occur in different parts of plant cells. We employed two oxidants that induce reactive oxygen species (ROS) in different intracellular compartments: methyl viologen (MV, in chloroplasts) and menadione (MD, in mitochondria). The responses of pea (Pisum sativum) leaf discs to MV or MD after 4-h incubation in dark or moderate (300 μE m s) or high light (1200 μE m s) were examined.
View Article and Find Full Text PDFOptimization of photosynthetic performance and protection against abiotic stress are essential to sustain plant growth. Photorespiratory metabolism can help plants to adapt to abiotic stress. The beneficial role of photorespiration under abiotic stress is further strengthened by cyclic electron flow (CEF) and alternative oxidase (AOX) pathways.
View Article and Find Full Text PDFThe electron partitioning between COX and AOX pathways of mitochondria and their coordination is necessary to meet the energy demands as well as to maintain optimized redox status in plants under varying environmental conditions. The relative contribution of these two pathways to total respiration is an important measure during a given stress condition. We describe in detail the procedure that allows the measurement of the parameters of COX and AOX pathway of respiration in mesophyll protoplasts using Clark-type O electrode.
View Article and Find Full Text PDFA comprehensive study which was undertaken on the effect of three polyamines (PAs) on stomatal closure was examined in relation to nitric oxide (NO) and reactive oxygen species (ROS) levels in guard cells of Arabidopsis thaliana. Three PAs-putrescine (Put), spermidine (Spd), and spermine (Spm)-induced stomatal closure, while increasing the levels of NO as well as ROS in guard cells. The roles of NO and ROS were confirmed by the reversal of closure by cPTIO (NO scavenger) and catalase (ROS scavenger).
View Article and Find Full Text PDFPlants use stomatal closure mediated by elicitors as the first step of the innate immune response to restrict the microbial entry. We present a comprehensive study of the effect of cryptogein and harpin, two elicitors from microbial pathogens of tobacco, on stomatal closure and guard cell signaling components in , a model plant. Cryptogein as well as harpin induced stomatal closure, while elevating the levels of reactive oxygen species (ROS) and nitric oxide (NO) in the guard cells of .
View Article and Find Full Text PDFC plants can more efficiently fix carbon in drought, high temperatures, and limitations of nitrogen or CO. Primary carboxylation is mediated by phosphoenolpyruvate carboxylase (PEPC, 4.1.
View Article and Find Full Text PDFDynamic regulation of stomatal aperture is essential for plants to optimize water use and CO2 uptake. Stomatal opening or closure is accompanied by the modulation of guard cell turgor. Among the events leading to stomatal closure by plant hormones or microbial elicitors, three signaling components stand out as the major converging points.
View Article and Find Full Text PDFPhyto-S1P and S1P induced stomatal closure in epidermis of pea ( Pisum sativum ) by raising the levels of NO and pH in guard cells. Phosphosphingolipids, such as phytosphingosine-1-phosphate (phyto-S1P) and sphingosine-1-phosphate (S1P), are important signaling components during drought stress. The biosynthesis of phyto-S1P or S1P is mediated by sphingosine kinases (SPHKs).
View Article and Find Full Text PDF