Publications by authors named "Agda A R de Oliveira"

In this work, gamma sterilization was validated, and the impact of this sterilization process on collagen/hydroxyapatite (Col/HAp) composites was investigated. It has been already recognized that the improper sterilization of healthcare products may lead to infection and mortality/morbidity issues in patients. Gamma sterilization has emerged as a promising sterilization method because it shows advantages such as low cost, a small increase in temperature of irradiated materials, and no production of toxic residues.

View Article and Find Full Text PDF

Synthetic biodegradable polymers are considered strategic in the biomaterials field and are used in various applications. Among the polymers used as biomaterials, polyurethanes (PUs) feature prominently due to their versatility and the ability to obtain products with a wide range of physical and mechanical properties. In this work, new biodegradable polyurethane films were developed based on hexamethylene diisocyanate (HDI) and glycerol as the hard segment (HS), and poly(caprolactone) triol (PCL triol) and low-molecular-weight poly(ethylene glycol) PEG as the soft segment (SS) without the use of a catalyst.

View Article and Find Full Text PDF

Nanotechnology offers a new strategy to develop novel bioactive materials, given that nano-scaled biomaterials exhibit an enhanced biocompatibility and bioactivity. In this work, we developed a method for the synthesis of spherical bioactive glass nanoparticles (BGNP) aimed at producing biomaterials for potential use in the repair of hard tissues. The BGNP were prepared using the sol-gel process based on the reaction of alkoxides and other precursors in aqueous media for obtaining the oxide-ternary system with the stoichiometric proportion of 60% SiO2, 36% CaO and 4% P2O5.

View Article and Find Full Text PDF

The development of polymer/bioactive glass has been recognized as a strategy to improve the mechanical behavior of bioactive glass-based materials. Several studies have reported systems based on bioactive glass/biopolymer composites. In this study, we developed a composite system based on bioactive glass nanoparticles (BGNP), obtained by a modified Stöber method.

View Article and Find Full Text PDF