Publications by authors named "Agathos S"

From sea shores to the abysses of the deep ocean, marine ecosystems have provided humanity with valuable medicinal resources. The use of marine organisms is discussed in ancient pharmacopoeias of different times and geographic regions and is still deeply rooted in traditional medicine. Thanks to present-day, large-scale bioprospecting and rigorous screening for bioactive metabolites, the ocean is coming back as an untapped resource of natural compounds with therapeutic potential.

View Article and Find Full Text PDF

A major challenge in microbial ecology is to understand the principles and processes by which microbes associate and interact in community assemblages. Microbial communities in mountain glaciers are unique as first colonizers and nutrient enrichment drivers for downstream ecosystems. However, mountain glaciers have been distinctively sensitive to climate perturbations and have suffered a severe retreat over the past 40  years, compelling us to understand glacier ecosystems before their disappearance.

View Article and Find Full Text PDF

Selenium is an important dietary supplement and an essential trace element incorporated into selenoproteins with growth-modulating properties and cytotoxic mechanisms of action. However, different compounds of selenium usually possess a narrow nutritional or therapeutic window with a low degree of absorption and delicate safety margins, depending on the dose and the chemical form in which they are provided to the organism. Hence, selenium nanoparticles (SeNPs) are emerging as a novel therapeutic and diagnostic platform with decreased toxicity and the capacity to enhance the biological properties of Se-based compounds.

View Article and Find Full Text PDF

Τhe ligninolytic enzyme laccase has proved its potential for environmental applications. However, there is no documented industrial application of free laccase due to low stability, poor reusability, and high costs. Immobilization has been considered as a powerful technique to enhance laccase's industrial potential.

View Article and Find Full Text PDF

Although the study of ribonucleic acid (RNA) therapeutics started decades ago, for many years, this field of research was overshadowed by the growing interest in DNA-based therapies. Nowadays, the role of several types of RNA in cell regulation processes and the development of various diseases have been elucidated, and research in RNA therapeutics is back with force. This short literature review aims to present general aspects of many of the molecules currently used in RNA therapeutics, including in vitro transcribed mRNA (IVT mRNA), antisense oligonucleotides (ASOs), aptamers, small interfering RNAs (siRNAs), and microRNAs (miRNAs).

View Article and Find Full Text PDF

Here, we report the draft whole-genome sequence of an anthracene-degrading bacterium, strain LB501T, using the PacBio and Illumina sequencing platforms. The complete genome sequence of strain LB501T consists of 6,713,618 bp and provides new insights into its metabolic capabilities, including aromatic conversion pathways with promiscuous activities.

View Article and Find Full Text PDF

Psychrophilic bacteria are valuable biocatalysts to develop robust bioaugmentation formulations for enhanced wastewater treatment at low temperatures or fluctuating temperature conditions. Here, using different biodiversity indices [based on species richness (SR), phylogenetic diversity (PD) and functional diversity (FD)], we studied the effects of microbial diversity of artificial bacterial consortia on the biomass gross yields (measured through OD) and removal efficiency of soluble chemical oxygen demand (mg sCOD removed/mg sCOD introduced) in synthetic, medium-strength wastewater. We built artificial consortia out of one to six bacterial strains isolated at 4°C through combinatorial biodiversity experiments.

View Article and Find Full Text PDF

Although biotechnologies for astaxanthin production from Haematococcus pluvialis have been developed for decades and many production facilities have been established throughout the world, the production cost is still high. This paper is to evaluate the current production processes and production facilities, to analyze the R&D strategies for process improvement, and to review the recent research advances shedding light on production cost reduction. With these efforts being made, we intent to conclude that the production cost of astaxanthin from Haematococcus might be substantially reduced to the levels comparable to that of chemical astaxanthin through further R&D and the future research might need to focus on strain selection and improvement, cultivation process optimization, innovation of cultivation methodologies, and revolution of extraction technologies.

View Article and Find Full Text PDF

Background: In South America, the history of human genetics is extensive and its beginnings go back to the onset of the twentieth century. In Ecuador, the historical record of human genetics and genomics research is limited. In this context, our work analyzes the current status and historical panorama of these fields, based on bibliographic searches in Scopus, Google Scholar, PubMed, and Web of Science.

View Article and Find Full Text PDF

Background: Plant pathogens are under significant selective pressure by the plant host. Consequently, they are expected to have adapted to this condition or contribute to evading plant defenses. In order to acquire long-term fitness, plant bacterial pathogens are usually forced to maintain advantageous genetic diversity in populations.

View Article and Find Full Text PDF

Mesenchymal stem cells and pluripotent stem cells are recognized as promising tools for tissue engineering, cell therapy, and drug screening. Their use in therapy requires the production of a sufficient number of cells committed to functional regenerative phenotypes. Time- and magnitude-controlled application of mechanical and biochemical cues is required to appropriately control the evolution of stem cell phenotype in 3D.

View Article and Find Full Text PDF

We report here the draft whole-genome sequence of a fluorene-degrading bacterium, sp. strain LB126. The genes involved in the upper biodegradation pathway of fluorene are located on a plasmid, and the lower pathway that generates tricarboxylic acid cycle intermediates is initiated by the -cleavage of protocatechuic acid that is chromosomally encoded.

View Article and Find Full Text PDF

Genomic medicine has greatly matured in terms of its technical capabilities, but the diffusion of genomic innovations worldwide faces significant barriers beyond mere access to technology. New global development strategies are sorely needed for biotechnologies such as genomics and their applications toward precision medicine without borders. Moreover, diffusion of genomic medicine globally cannot adhere to a "one-size-fits-all-countries" development strategy, in the same way that drug treatments should be customized.

View Article and Find Full Text PDF

Several methodologies have been devised for the design of nanomaterials. The "Holy Grail" for materials scientists is the cost-effective, eco-friendly synthesis of nanomaterials with controlled sizes, shapes and compositions, as these features confer to the as-produced nanocrystals unique properties making them appropriate candidates for valuable bio-applications. The present review summarizes published data regarding the production of nanomaterials with special features via sustainable methodologies based on the utilization of natural bioresources.

View Article and Find Full Text PDF

Polluted environments are a reservoir of microbial species able to degrade or to convert pollutants to harmless compounds. The proper management of microbial resources requires a comprehensive characterization of their genetic pool to assess the fate of contaminants and increase the efficiency of bioremediation processes. Metagenomics offers appropriate tools to describe microbial communities in their whole complexity without lab-based cultivation of individual strains.

View Article and Find Full Text PDF

The microbial potential for toluene degradation within sediments from a tar oil-contaminated site in Flingern, Germany, was assessed using a metagenomic approach. High molecular weight environmental DNA from contaminated sediments was extracted, purified, and cloned into fosmid and BAC vectors and transformed into Escherichia coli. The fosmid library was screened by hybridization with a PCR amplicon of the α-subunit of the toluene 4-monooxygenase gene to identify genes and pathways encoding toluene degradation.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) have emerged as an important tool for tissue engineering, thanks to their differentiation potential and their broad trophic activities. However, for clinical purposes or for relevant in vitro applications, large quantities of MSCs are required, which could hardly be reached using conventional cultivation in plastic dishes. Microcarriers have high surface to volume ratio, which enables the easy scale-up of the expansion and differentiation of MSCs.

View Article and Find Full Text PDF

The Acidobacteria phylum is of high ecological interest. Its members are ubiquitous and particularly abundant in soils but many are recalcitrant to cultivation in the laboratory. Thus, the ability of Acidobacteria to capture and maintain plasmids remains largely unexplored.

View Article and Find Full Text PDF

Human mesenchymal stem cells (hMSCs) have emerged as an important cell type in cell therapy and tissue engineering. In these applications, maintaining the therapeutic properties of hMSCs requires tight control of the culture environments and the structural cell organizations. Bioreactor systems are essential tools to achieve these goals in the clinical-scale expansion and tissue engineering applications.

View Article and Find Full Text PDF

The production of laccases from Trametes pubescens was investigated along with the role of nutrients and elicitors. Copper proved to be a fundamental inducer, although productivity yields were consistently enhanced only in the presence of additional compounds (textile dyes). Using a central composite design, the optimal culture condition was examined, by taking into consideration the three distinct variables and their combinatorial effect.

View Article and Find Full Text PDF

The gradual introduction of biodiesel in the Brazilian energy landscape has primarily occurred through its blending with conventional petroleum diesel (e.g., B20 (20% biodiesel) and B5 (5% biodiesel) formulations).

View Article and Find Full Text PDF