Publications by authors named "Agatha M Pelosine"

Osteomyelitis is an inflammation of bone tissue usually caused by pyogenic bacteria. The most recurrent clinical approach consists of bone debridement followed by parenteral administration of antibiotics. However, systemic antibiotic treatment has limitations regarding absorption rate and bioavailability over time.

View Article and Find Full Text PDF

Bisphosphonates are a class of drugs that induce bone cancer cell death and favor bone regeneration, making them suitable for bone cancer treatment. However, when combined with bioactive glasses to enhance bone regeneration, a chemical bond between biphosphonates and the glass surface inactivates their mechanism of action. A new colloidal hydrogel-based drug delivery system could overcome that limitation once bisphosphonates, such as zoledronic acid (ZA), are incorporated into hydrogel micelles, avoiding their interaction with the glass surface.

View Article and Find Full Text PDF

The treatment of bone cancer involves tumor resection followed by bone reconstruction of the defect caused by the tumor using biomaterials. Additionally, post-surgery protocols cover chemotherapy, radiotherapy, or drug administration, which are employed as adjuvant treatments to prevent tumor recurrence. In this work, we reviewed new strategies for bone cancer treatment based on bioactive glasses as carriers of cancer-targeted and other drugs that are intended for bone regeneration in conjunction with adjuvant treatments.

View Article and Find Full Text PDF

The tissue engineering of dental oral tissue is tackling significant advances and the use of stem cells promises to boost the therapeutical approaches of regenerative dentistry. Despite advances in this field, the literature is still scarce regarding the modulatory effect of laser photobiomodulation (PBM) on genes related to inflammation and osteogenesis in Postnatal Human Dental Pulp Stem cells (DPSCs). This study pointedly investigated the effect of PBM treatment in proliferation, growth and differentiation factors, mineralization, and extracellular matrix remodeling genes in DPSCs.

View Article and Find Full Text PDF