Publications by authors named "Agate Noer"

Introduction: This report presents a case of an exceptionally delayed distant recurrence of a choroidal melanoma, occurring 4 decades after the enucleation of the affected eye.

Case Presentation: In 1977, a 29-year-old man underwent enucleation for a choroidal melanoma. At the age of 68 years, he was diagnosed with advanced prostate cancer.

View Article and Find Full Text PDF

Human limbal epithelial stem cells (hLESCs) continuously replenish lost or damaged human corneal epithelial cells. The percentage of stem/progenitor cells in autologous ex vivo expanded tissue is essential for the long-term success of transplantation in patients with limbal epithelial stem cell deficiency. However, the molecular processes governing the stemness and differentiation state of hLESCs remain uncertain.

View Article and Find Full Text PDF

We aimed to investigate whether a novel technique of human amniotic membrane (HAM) preparation that mimics the crypts in the limbus enhances the number of progenitor cells cultured ex vivo. The HAMs were sutured on polyester membrane (1) standardly, to obtain a flat HAM surface, or (2) loosely, achieving the radial folding to mimic crypts in the limbus. Immunohistochemistry was used to demonstrate a higher number of cells positive for progenitor markers p63α (37.

View Article and Find Full Text PDF

Purpose: Uveal melanoma (UM) is an aggressive malignancy, in which nearly 50% of the patients die from metastatic disease. Aberrant DNA methylation is recognized as an important epigenomic event in carcinogenesis. Formalin-fixed paraffin-embedded (FFPE) samples represent a valuable source of tumor tissue, and recent technology has enabled the use of these samples in genome-wide DNA methylation analyses.

View Article and Find Full Text PDF

Late spontaneous in-the-bag intraocular lens (IOL) dislocation is a complication presenting 6 months or later after cataract surgery. We aimed to characterize the cells in the lens capsules (LCs) of 18 patients with spontaneous late in-the-bag IOL dislocation. Patients' average age was 82.

View Article and Find Full Text PDF

Unlabelled: Purpose/Aim: The adult human retina has limited regenerative potential, and severe injury will result in permanent damage. Lower vertebrates handle retinal injury by activating neural stem cells (NSCs) in the ciliary marginal zone (CMZ). Müller glia-like cells expressing markers of NSCs are also present in the peripheral retina (PR) of the adult human eye, leading to the hypothesis that a CMZ-like zone might exists also in humans.

View Article and Find Full Text PDF

Purpose: Uveal melanoma (UM) has a high propensity for metastatic spread, and approximately 40-50% of patients die of metastatic disease. Metastases can be found at the time of diagnosis but also several years after the tumor has been removed. The survival of disseminated cancer cells is known to be linked to anchorage independence, anoikis resistance, and an adaptive cellular metabolism.

View Article and Find Full Text PDF

Introduction: Multilamellar bodies (MLBs) are concentric cytoplasmic membranes which form through an autophagy-dependent mechanism. In the cornea, the presence of MLBs is associated with Schnyder corneal dystrophy (SCD). Ex vivo 3D modelling of the corneal stroma and SCD can help study pathogenesis and resolution of the disorder.

View Article and Find Full Text PDF

Patients with limbal stem cell deficiency (LSCD) often experience pain and photophobia due to recurrent epithelial defects and chronic inflammation of the cornea. Successfully restoring a healthy corneal surface in these patients by transplantation of ex vivo expanded human limbal epithelial cells (LECs) may alleviate these symptoms and significantly improve their quality of life. The clinical outcome of transplantation is known to be influenced by the quality of transplanted cells.

View Article and Find Full Text PDF

Long-term cultures of cornea limbal epithelial stem cells (LESCs) were developed and characterized for future tissue engineering and clinical applications. The limbal tissue explants were cultivated and expanded for more than 3 months in medium containing serum as the only growth supplement and without use of scaffolds. Viable 3D cell outgrowth from the explants was observed within 4 weeks of cultivation.

View Article and Find Full Text PDF

Inhibition of sclerostin, a glycoprotein secreted by osteocytes, offers a new therapeutic paradigm for treatment of osteoporosis (OP) through its critical role as Wnt/catenin signaling regulator. This study describes the epigenetic regulation of SOST expression in bone biopsies of postmenopausal women. We correlated serum sclerostin to bone mineral density (BMD), fractures, and bone remodeling parameters, and related these findings to epigenetic and genetic disease mechanisms.

View Article and Find Full Text PDF

Adipose-tissue-derived stem cells (ASCs) have received considerable attention due to their easy access, expansion potential, and differentiation capacity. ASCs are believed to have the potential to differentiate into neurons. However, the mechanisms by which this may occur remain largely unknown.

View Article and Find Full Text PDF

Long-term culture of mesenchymal stem cells leads to a loss of differentiation capacity, the molecular mechanism of which remains not understood. We show here that expansion of adipose stem cells (ASCs) to late passage (replicative senescence) is associated with promoter-specific and global changes in epigenetic histone modifications. In undifferentiated ASCs, inactive adipogenic and myogenic promoters are enriched in a repressive combination of trimethylated H3K4 (H3K4m3) and H3K27m3 in the absence of H3K9m3, a heterochromatin mark.

View Article and Find Full Text PDF

The potential use of human mesenchymal stem cells for therapeutic applications implies large scale in vitro culture, increasing the probability of genetic instability and transformation. We examine here the incidence of unbalanced and balanced chromosome rearrangements in polyclonal and single cell-derived cultures of human adipose stem cells to senescence. G-banding karyotyping of the polyclonal cultures shows a normal karyotype.

View Article and Find Full Text PDF

SUMMARY: Stem cells have the ability to self-renew, and give rise to one or more differentiated cell types. Embryonic stem cells can differentiate into all cell types of the body and have unlimited self-renewal capacity. Somatic stem cells are found in many adult tissues.

View Article and Find Full Text PDF

Stromal stem cells identified in various adult mesenchymal tissues (commonly called mesenchymal stem cells [MSCs]) have in past years received more attention as a result of their potential interest as replacement cells in regenerative medicine. An abundant and easily accessible source of adult human MSCs are stem cells harvested from liposuction material. Similarly to bone marrow-derived MSCs, human adipose tissue-derived stem cells (ASCs) can give rise to a variety of cell types in vitro and in vivo; however, they have a propensity to differentiate into primarily mesodermal lineages.

View Article and Find Full Text PDF

In opposition to terminally differentiated cells, stem cells can self-renew and give rise to multiple cell types. Embryonic stem cells retain the ability of the inner cell mass of blastocysts to differentiate into all cell types of the body and have acquired in culture unlimited self-renewal capacity. Somatic stem cells are found in many adult tissues, have an extensive but finite lifespan and can differentiate into a more restricted array of cell types.

View Article and Find Full Text PDF

Background: Potential therapeutic use of mesenchymal stem cells (MSCs) is likely to require large-scale in vitro expansion of the cells before transplantation. MSCs from adipose tissue can be cultured extensively until senescence. However, little is known on the differentiation potential of adipose stem cells (ASCs) upon extended culture and on associated epigenetic alterations.

View Article and Find Full Text PDF

In vivo endothelial commitment of adipose stem cells (ASCs) has scarcely been reported, and controversy remains on the contribution of ASCs to vascularization. We address the epigenetic commitment of ASCs to the endothelial lineage. We report a bisulfite sequencing analysis of CpG methylation in the promoters of two endothelial-cell-specific genes, CD31 and CD144, in freshly isolated and in cultures of ASCs before and after induction of endothelial differentiation.

View Article and Find Full Text PDF

The functional reprogramming of a differentiated cell to pluripotency may present beneficial applications in regenerative medicine. Somatic cell nuclear transfer may offer this possibility, but technical hurdles and ethical guidelines currently prevent application of this technology in several countries. As a result, alternative approaches are being developed for altering cell fate.

View Article and Find Full Text PDF

Mesenchymal stem cells from adipose tissue can differentiate into mesodermal lineages. Differentiation potential, however, varies between clones of adipose stem cells (ASCs), raising the hypothesis that epigenetic differences account for this variability. We report here a bisulfite sequencing analysis of CpG methylation of adipogenic (leptin [LEP], peroxisome proliferator-activated receptor gamma 2 [PPARG2], fatty acid-binding protein 4 [FABP4], and lipoprotein lipase [LPL]) promoters and of nonadipogenic (myogenin [MYOG], CD31, and GAPDH) loci in freshly isolated human ASCs and in cultured ASCs, in relation to gene expression and differentiation potential.

View Article and Find Full Text PDF

Functional reprogramming of a differentiated cell toward pluripotency may have long-term applications in regenerative medicine. We report the induction of dedifferentiation, associated with genomewide programming of gene expression and epigenetic reprogramming of an embryonic gene, in epithelial 293T cells treated with an extract of undifferentiated human NCCIT carcinoma cells. 293T cells exposed for 1 h to extract of NCCIT cells, but not of 293T or Jurkat T-cells, form defined colonies that are maintained for at least 23 passages in culture.

View Article and Find Full Text PDF