Publications by authors named "Agata Stryjewska"

Cortical interneurons originating in the embryonic medial ganglionic eminence (MGE) diverge into a range of different subtypes found in the adult mouse cerebral cortex. The mechanisms underlying this divergence and the timing when subtype identity is set up remain unclear. We identify the highly conserved transcriptional co-factor MTG8 as being pivotal in the development of a large subset of MGE cortical interneurons that co-expresses Somatostatin (SST) and Neuropeptide Y (NPY).

View Article and Find Full Text PDF

Cortical GABAergic interneurons are generated in large numbers in the ganglionic eminences and migrate into the cerebral cortex during embryogenesis. At early postnatal stages, during neuronal circuit maturation, autonomous and activity-dependent mechanisms operate within the cortex to adjust cell numbers by eliminating naturally occurring neuron excess. Here, we show that when cortical interneurons are generated in aberrantly high numbers-due to a defect in precursor cell proliferation during embryogenesis-extra parvalbumin interneurons persist in the postnatal mouse cortex during critical periods of cortical network maturation.

View Article and Find Full Text PDF

Skeletal muscle differentiation is triggered by a unique family of myogenic basic helix-loop-helix transcription factors, including MyoD, MRF-4, Myf-5, and Myogenin. These transcription factors bind promoters and distant regulatory regions, including E-box elements, of genes whose expression is restricted to muscle cells. Other E-box binding zinc finger proteins target the same DNA response elements, however, their function in muscle development and regeneration is still unknown.

View Article and Find Full Text PDF

The transcription factor Zeb2 controls fate specification and subsequent differentiation and maturation of multiple cell types in various embryonic tissues. It binds many protein partners, including activated Smad proteins and the NuRD co-repressor complex. How Zeb2 subdomains support cell differentiation in various contexts has remained elusive.

View Article and Find Full Text PDF

Cooperative actions of extrinsic signals and cell-intrinsic transcription factors alter gene regulatory networks enabling cells to respond appropriately to environmental cues. Signaling by transforming growth factor type β (TGFβ) family ligands (eg, bone morphogenetic proteins [BMPs] and Activin/Nodal) exerts cell-type specific and context-dependent transcriptional changes, thereby steering cellular transitions throughout embryogenesis. Little is known about coordinated regulation and transcriptional interplay of the TGFβ system.

View Article and Find Full Text PDF

Upon gastrulation, the mammalian conceptus transforms rapidly from a simple bilayer into a multilayered embryo enveloped by its extra-embryonic membranes. Impaired development of the amnion, the innermost membrane, causes major malformations. To clarify the origin of the mouse amnion, we used single-cell labelling and clonal analysis.

View Article and Find Full Text PDF

In human embryonic stem cells (ESCs) the transcription factor Zeb2 regulates neuroectoderm versus mesendoderm formation, but it is unclear how Zeb2 affects the global transcriptional regulatory network in these cell-fate decisions. We generated Zeb2 knockout (KO) mouse ESCs, subjected them as embryoid bodies (EBs) to neural and general differentiation and carried out temporal RNA-sequencing (RNA-seq) and reduced representation bisulfite sequencing (RRBS) analysis in neural differentiation. This shows that Zeb2 acts preferentially as a transcriptional repressor associated with developmental progression and that Zeb2 KO ESCs can exit from their naïve state.

View Article and Find Full Text PDF

E-cadherin-mediated cell-cell adhesion is critical for naive pluripotency of cultured mouse embryonic stem cells (mESCs). E-cadherin-depleted mESC fail to downregulate their pluripotency program and are unable to initiate lineage commitment. To further explore the roles of cell adhesion molecules during mESC differentiation, we focused on p120 catenin (p120ctn).

View Article and Find Full Text PDF

ZEB2 is a multi-zinc-finger transcription factor known to play a significant role in early neurogenesis and in epithelial-mesenchymal transition-dependent tumor metastasis. Although the function of ZEB2 in T lymphocytes is unknown, activity of the closely related family member ZEB1 has been implicated in lymphocyte development. Here, we find that ZEB2 expression is up-regulated by activated T cells, specifically in the KLRG1(hi) effector CD8(+) T cell subset.

View Article and Find Full Text PDF

The zinc finger transcription factor Smad-interacting protein-1 (Sip1; Zeb2, Zfhx1b) plays an important role during vertebrate embryogenesis in various tissues and differentiating cell types, and during tumorigenesis. Previous biochemical analysis suggests that interactions with several partner proteins, including TGFβ family receptor-activated Smads, regulate the activities of Sip1 in the nucleus both as a DNA-binding transcriptional repressor and activator. Using a peptide aptamer approach we mapped in Sip1 its Smad-binding domain (SBD), initially defined as a segment of 51 amino acids, to a shorter stretch of 14 amino acids within this SBD.

View Article and Find Full Text PDF

Signaling by the many ligands of the TGFβ family strongly converges towards only five receptor-activated, intracellular Smad proteins, which fall into two classes i.e. Smad2/3 and Smad1/5/8, respectively.

View Article and Find Full Text PDF

The fate of cortical progenitors, which progressively generate neurons and glial cells during development, is determined by temporally and spatially regulated signaling mechanisms. We found that the transcription factor Sip1 (Zfhx1b), which is produced at high levels in postmitotic neocortical neurons, regulates progenitor fate non-cell autonomously. Conditional deletion of Sip1 in young neurons induced premature production of upper-layer neurons at the expense of deep layers, precocious and increased generation of glial precursors, and enhanced postnatal astrocytogenesis.

View Article and Find Full Text PDF