Publications by authors named "Agata Sikorska"

Cancer remains one of the leading causes of death worldwide and poses a significant challenge to effective treatment due to its complexity. Angiogenesis, the formation of new blood vessels, is one of the cancer hallmarks and is a critical process in tumor growth and metastasis. The pivotal role of angiogenesis in cancer development has made antiangiogenic treatment a promising strategy for cancer therapy.

View Article and Find Full Text PDF

Silk is a biocompatible and biodegradable material that enables the formation of various morphological forms, including nanospheres. The functionalization of bioengineered silk makes it possible to produce particles with specific properties. In addition to tumor cells, the tumor microenvironment (TME) includes stromal, immune, endothelial cells, signaling molecules, and the extracellular matrix (ECM).

View Article and Find Full Text PDF

High expression and phosphorylation of signal transducer and transcription activator 3 (STAT3) are correlated with progression and poor prognosis in various types of cancer. The constitutive activation of STAT3 in cancer affects processes such as cell proliferation, apoptosis, metastasis, angiogenesis, and drug resistance. The importance of STAT3 in cancer makes it a potential therapeutic target.

View Article and Find Full Text PDF

Hereditary familial adenomatous polyposis (FAP) in humans significantly increases the risk of development of colorectal cancer (CRC). Germline mutations in the APC (adenomatous polyposis coli) gene are responsible for FAP. Despite having the same causative mutation, the severity of the disease differs from patient to patient.

View Article and Find Full Text PDF

Familial adenomatous polyposis (FAP) is a hereditary predisposition to formation of colon polyps that can progress to colorectal cancer (CRC). The severity of polyposis varies substantially within families bearing the same germline mutation in the adenomatous polyposis coli (APC) tumour suppressor gene. The progressive step-wise accumulation of genetic events in tumour suppressor genes and oncogenes leads to oncogenic transformation, with driver alterations in the tumour protein p53 (TP53) gene playing a key role in advanced stage CRC.

View Article and Find Full Text PDF

Hereditary spastic paraplegias (HSPs) consist of a heterogeneous group of genetically determined neurodegenerative disorders. Progressive lower extremity weakness and spasticity are the prominent features of HSPs resulting from retrograde axonal degeneration of the corticospinal tracts. Three genetic types, SPG3 (ATL1), SPG4 (SPAST) and SPG31 (REEP1), appear predominantly and may account for up to 50% of autosomal dominant hereditary spastic paraplegias (AD-HSPs).

View Article and Find Full Text PDF

The important role of unconventional myosin VI (MVI) in skeletal and cardiac muscle has been recently postulated (Karolczak et al. in Histochem Cell Biol 139:873-885, 2013). Here, we addressed for the first time a role for this unique myosin motor in myogenic cells as well as during their differentiation into myotubes.

View Article and Find Full Text PDF

Desmin is a muscle-specific intermediate filament protein which forms a network connecting the sarcomere, T tubules, sarcolemma, nuclear membrane, mitochondria and other organelles. Mutations in the gene coding for desmin (DES) cause skeletal myopathies often combined with cardiomyopathy, or isolated cardiomyopathies. The molecular pathomechanisms of the disease remain ambiguous.

View Article and Find Full Text PDF