The emergence of retinal progenitor cells and differentiation to various retinal cell types represent fundamental processes during retinal development. Herein, we provide a comprehensive single cell characterisation of transcriptional and chromatin accessibility changes that underline retinal progenitor cell specification and differentiation over the course of human retinal development up to midgestation. Our lineage trajectory data demonstrate the presence of early retinal progenitors, which transit to late, and further to transient neurogenic progenitors, that give rise to all the retinal neurons.
View Article and Find Full Text PDFMolecular information on the early stages of human retinal development remains scarce due to limitations in obtaining early human eye samples. Pluripotent stem cell-derived retinal organoids (ROs) provide an unprecedented opportunity for studying early retinogenesis. Using a combination of single cell RNA-seq and spatial transcriptomics we present for the first-time a single cell spatiotemporal transcriptome of RO development.
View Article and Find Full Text PDFRetinoblastoma (Rb) is a rare malignant disorder affecting the developing retina of children under the age of five. Chemotherapeutic agents used for treating Rb have been associated with defects of the retinal pigment epithelium (RPE), such as hyperplasia, gliosis, and mottling. Herein, we have developed two pluripotent stem cell (PSC)-RPE models to assess the cytotoxicity of known Rb chemotherapeutics such as Melphalan, Topotecan and TW-37.
View Article and Find Full Text PDFRetinoblastoma (Rb) is a childhood cancer of the developing retina, accounting for up to 17% of all tumors in infancy. To gain insights into the transcriptional events of cell state transitions during Rb development, we established 2 disease models via retinal organoid differentiation of a pRB (retinoblastoma protein)-depleted human embryonic stem cell line (RB1-null hESCs) and a pRB patient-specific induced pluripotent (iPSC) line harboring a RB1 biallelic mutation (c.2082delC).
View Article and Find Full Text PDFAccurate assembly and maturation of human mitochondrial ribosomes is essential for synthesis of the 13 polypeptides encoded by the mitochondrial genome. This process requires the correct integration of 80 proteins, 1 mt (mitochondrial)-tRNA and 2 mt-rRNA species, the latter being post-transcriptionally modified at many sites. Here, we report that human ribosome-binding factor A (RBFA) is a mitochondrial RNA-binding protein that exerts crucial roles in mitoribosome biogenesis.
View Article and Find Full Text PDFMitochondrial gene expression is a fundamental process that is largely dependent on nuclear-encoded proteins. Several steps of mitochondrial RNA processing and maturation, including RNA post-transcriptional modification, appear to be spatially organized into distinct foci, which we have previously termed mitochondrial RNA granules (MRGs). Although an increasing number of proteins have been localized to MRGs, a comprehensive analysis of the proteome of these structures is still lacking.
View Article and Find Full Text PDFLRPPRC is a protein that has attracted interest both for its role in post-transcriptional regulation of mitochondrial gene expression and more recently because numerous mutated variants have been characterized as causing severe infantile mitochondrial neurodegeneration. LRPPRC belongs to the pentatricopeptide repeat (PPR) protein family, originally defined by their RNA binding capacity, and forms a complex with SLIRP that harbours an RNA recognition motif (RRM) domain. We show here that LRPPRC displays a broad and strong RNA binding capacity in vitro in contrast to SLIRP that associates only weakly with RNA.
View Article and Find Full Text PDFMitochondrial protein synthesis is essential for all mammals, being responsible for providing key components of the oxidative phosphorylation complexes. Although only thirteen different polypeptides are made, the molecular details of this deceptively simple process remain incomplete. Central to this process is a non-canonical ribosome, the mitoribosome, which has evolved to address its unique mandate.
View Article and Find Full Text PDFDisorders of the mitochondrial genome cause a wide spectrum of disease, these present mainly as neurological and/or muscle related pathologies. Due to the intractability of the human mitochondrial genome there are currently no effective treatments for these disorders. The majority of the pathogenic mutations lie in the genes encoding mitochondrial tRNAs.
View Article and Find Full Text PDFMultiple respiratory chain deficiencies represent a common cause of mitochondrial diseases and are associated with a wide range of clinical symptoms. We report a subject, born to consanguineous parents, with growth retardation and neurological deterioration. Multiple respiratory chain deficiency was found in muscle and fibroblasts of the subject as well as abnormal assembly of complexes I and IV.
View Article and Find Full Text PDFTra2β regulates a number of splicing switches including activation of the human testis-specific exon HIPK3-T in the Homeodomain Interacting Protein Kinase 3 gene. By testing HIPK3-T exons of different intrinsic strengths, we found Tra2β most efficiently activated splicing inclusion of intrinsically weak exons, although these were spliced at a lower overall level. Both the RRM and N-terminal RS-rich region of Tra2β were required for splicing activation.
View Article and Find Full Text PDFMitochondria are ubiquitous and essential organelles for all nucleated cells of higher eukaryotes. They contain their own genome [mtDNA (mitochondrial DNA)], and this autosomally replicating extranuclear DNA encodes a complement of genes whose products are required to couple oxidative phosphorylation. Sequencing of this human mtDNA more than 20 years ago revealed unusual features that included a modified codon usage.
View Article and Find Full Text PDFThe bacterial Ras-like protein Era has been reported previously to bind 16S rRNA within the 30S ribosomal subunit and to play a crucial role in ribosome assembly. An orthologue of this essential GTPase ERAL1 (Era G-protein-like 1) exists in higher eukaryotes and although its exact molecular function and cellular localization is unknown, its absence has been linked to apoptosis. In the present study we show that human ERAL1 is a mitochondrial protein important for the formation of the 28S small mitoribosomal subunit.
View Article and Find Full Text PDFPurpose: High-risk neuroblastoma is characterized by poor survival rates, and the development of improved therapeutic approaches is a priority. Temozolomide and topotecan show promising clinical activity against neuroblastoma. Poly(ADP-ribose) polymerase-1 (PARP-1) promotes DNA repair and cell survival following genotoxic insult; we postulated that its inhibition may enhance the efficacy of these DNA-damaging drugs in pediatric cancers.
View Article and Find Full Text PDF