Publications by authors named "Agata Papa"

In the field of cartilage engineering, continuing efforts have focused on fabricating scaffolds that favor maintenance of the chondrocytic phenotype and matrix formation, in addition to providing a permeable, hydrated, microporous structure and mechanical support. The potential of hyaluronan-based hydrogels has been well established, but the ideal matrix remains to be developed. This study describes the development of hyaluronan sponges-based scaffolds obtained by lysine methyl-ester crosslinking.

View Article and Find Full Text PDF

Background: Recent studies have reported the roles of Hyaluronic acid (HA) chains of diverse length in wound repair, especially considering the simultaneous occurrence in vivo of both high- (H-HA) and low-molecular weight (L-HA) hyaluronan at an injury site. It has been shown that HA fragments (5 ≤ MW ≤ 20 kDa) usually trigger an inflammatory response that, on one hand, is the first signal in the activation of a repair mechanism but on the other, when it's overexpressed, it may promote unwanted side effects. The present experimental research has aimed to investigate H-HA, L-HA and of a newly developed complex of the two (H-HA/L-HA) for stability (e.

View Article and Find Full Text PDF

Most of hyaluronan (HA)-based dermal fillers currently available on the market are produced through biopolymer crosslinking with 1,4-butandiol diglycidyl ether (BDDGE). Chemical modification is usually performed on the biopolymer dissolved in a highly alkaline aqueous medium (homogeneous conditions). Heterogeneous conditions for HA reaction with BDDGE were exploited here to obtain competitive HA fillers and to assess potential improvements in production process.

View Article and Find Full Text PDF

A novel approach for hyaluronic acid (HA) crosslinking via diglycidyl ether (DGE) was investigated for scaffolds fabrication. In particular, HA sponges were obtained by lyophilization and then reacted with 1,4-butandiol diglycidyl ether (BDDGE) in heterogeneous conditions. Insoluble matrices with 4-20% of the reactive sites of HA modified were produced.

View Article and Find Full Text PDF

Extracellular matrix components such as hyaluronan (HA) and chondroitin sulfate (CS) were combined with a synthetic matrix of p(HEMA-co-METAC) (poly(2-hydroxyethylmethacrylate-co-2-methacryloxyethyltrimethylammonium)) at 1% and 2% w/w concentration following a previously developed procedure. The resulting semi-interpenetrating hydrogels were able to extensively swell in water incrementing their dry weight up to 13 fold depending on the glycosamminoglycan content and nature. When swollen in physiological solution, materials water uptake significantly decreased, and the differences in swelling capability became negligible.

View Article and Find Full Text PDF