Publications by authors named "Agata Lemiesz"

Enzymes that catalyse CpG methylation in DNA, including the DNA methyltransferases 1 (DNMT1), 3A (DNMT3A) and 3B (DNMT3B), are indispensable for mammalian tissue development and homeostasis. They are also implicated in human developmental disorders and cancers, supporting the critical role of DNA methylation in the specification and maintenance of cell fate. Previous studies have suggested that post-translational modifications of histones are involved in specifying patterns of DNA methyltransferase localization and DNA methylation at promoters and actively transcribed gene bodies.

View Article and Find Full Text PDF

Mutations in epigenetic pathways are common oncogenic drivers. Histones, the fundamental substrates for chromatin-modifying and remodelling enzymes, are mutated in tumours including gliomas, sarcomas, head and neck cancers, and carcinosarcomas. Classical 'oncohistone' mutations occur in the N-terminal tail of histone H3 and affect the function of polycomb repressor complexes 1 and 2 (PRC1 and PRC2).

View Article and Find Full Text PDF

Determination of the molecular properties of genetically targeted cell types has led to fundamental insights into mouse brain function and dysfunction. Here, we report an efficient strategy for precise exploration of gene expression and epigenetic events in specific cell types in a range of species, including postmortem human brain. We demonstrate that classically defined, homologous neuronal and glial cell types differ between rodent and human by the expression of hundreds of orthologous, cell specific genes.

View Article and Find Full Text PDF

Myt1 and Myt1l (Myelin transcription factor 1, and Myt1-like) are members of a small family of closely related zinc finger transcription factors, characterized by two clusters of C2HC zinc fingers. Both are widely expressed during early embryogenesis, but are largely restricted to expression within the brain in the adult. Myt1l, as part of a three transcription factor mix, can reprogram fibroblasts to neurons and plays a role in maintaining neuronal identity.

View Article and Find Full Text PDF