Photocurable materials offer a rapid transition from a liquid to a solid state, and have recently received great interest in the medical field. However, while dental resins are very popular, only a few materials have been developed for soft tissue repair. This study aims to synthesize a difunctional methacrylate monomer using a dibutyltin dilaurate which is suitable for the photocuring of soft materials.
View Article and Find Full Text PDFTo demonstrate the feasibility of obtaining low-molecular-weight organic films (below 200 Da) using non-solvent PVD processes, glucose layers were produced via pulsed laser deposition (PLD) and pulsed electron beam deposition (PED) methods. Glucose was chosen due to its fundamental role in various biological processes, and because this low-molecular-weight compound is a solid at room temperature, which is required for both techniques. The physical and chemical structures of the deposited glucose layers were characterized by optical, scanning electron, and atomic force microscopy, as well as by X-ray diffraction, X-ray photoelectron, and infrared spectroscopy.
View Article and Find Full Text PDFInjectable and photocurable biomaterials are receiving a lot of attention due to their ease of application syringe or dedicated applicator and ability to be used in laparoscopic and robotic minimally invasive procedures. The aim of this work was to synthesize photocurable ester-urethane macromonomers using a heterometallic magnesium-titanium catalyst, magnesium-titanium(iv) butoxide for elastomeric polymer networks. The progress of the two-step synthesis of macromonomers was monitored using infrared spectroscopy.
View Article and Find Full Text PDFThe antibacterial activity of ,-acylated chitosan derivative with linoleic acid (CH_LA) was tested by disc and well diffusion, agar impregnation and microdilution methods against , and strains. Hydrophobically modified chitosan (HMC) was expected to exhibit enhanced antibacterial activity and specific mucin interactions. Although diffusion tests have not indicated the antibacterial potential of chitosan (CH) or CH_LA, the results of the microdilution method demonstrated that tested polymers significantly reduced the amount of living bacteria cells in different concentrations depending on the microorganism.
View Article and Find Full Text PDFMultifunctional and biofunctional coatings for medical devices are an attractive strategy towards tailoring the interactions of the device with the body, thereby influencing the host response, and the susceptibility to microbial colonization. Here we describe the development of a coating process to yield amphiphilic, lubricious coatings, resistant to bacterial colonization, based on chitosan. Chitosan-fatty acid derivatives were obtained by simultaneous N,O-acylation of chitosan with either linoleic, α-linolenic, or dilinoleic acid.
View Article and Find Full Text PDFThe structure of acylated chitosan derivatives strongly determines the properties of obtained products, influencing their hydrodynamic properties and thereby their solubility or self-assembly susceptibility. In the present work, the significance of slight changes in acylation conditions on the structure and properties of the products is discussed. A series of chitosan-acylated derivatives was synthesized by varying reaction conditions in a two-step process.
View Article and Find Full Text PDFWe present an ink platform for a printable polymer-graphene nanocomposite that is intended for the development of modular biosensors. The ink consists of catechol-modified chitosan and reduced graphene oxide decorated with platinum nanoparticles (rGO-Pt). We modified the chitosan with catechol groups, in order to obtain adhesive properties and improve solubility.
View Article and Find Full Text PDFKinases are known to regulate the majority of human cellular processes such as communication, division, metabolism, survival and apoptosis therefore they can be promising targets in cancer diseases, viral infection and in other disorders. Small molecules acting as selective human protein kinase inhibitors are very attractive pharmacological targets. This review presents a number of examples of biologically active natural and synthetic benzo[b]furans and their derivatives, such as benzo[b]furan-2- and 3-ones, benzo[b]furan-2- and 3-carboxylic acids, as well as benzo[c]furans as potential inhibitors of various human protein kinases.
View Article and Find Full Text PDFA series of novel Schiff bases and secondary amines were obtained in good yields, as a result of the reductive amination of alkyl 2-(2-formyl-4-nitrophenoxy)alkanoates with both aniline and 4-methoxyaniline under established mild reaction conditions. Sodium triacetoxyborohydride as well as hydrogen in the presence of palladium on carbon were used as efficient reducing agents of the Schiff bases, in both direct and stepwise reductive amination processes. The Schiff bases, amines, and amine hydrochlorides were designed as potential antibacterial agents, and structure-activity relationship could be established following in vitro assays against Gram-positive and Gram-negative bacteria.
View Article and Find Full Text PDF