Publications by authors named "Agastya P Bhati"

Free energy calculations for protein-ligand complexes have become widespread in recent years owing to several conceptual, methodological and technological advances. Central among these is the use of ensemble methods which permits accurate, precise and reproducible predictions and is necessary for uncertainty quantification. Absolute binding free energies (ABFEs) are challenging to predict using alchemical methods and their routine application in drug discovery has remained out of reach until now.

View Article and Find Full Text PDF

Active learning (AL) is a specific instance of sequential experimental design and uses machine learning to intelligently choose the next data point or batch of molecular structures to be evaluated. In this sense, it closely mimics the iterative design-make-test-analysis cycle of laboratory experiments to find optimized compounds for a given design task. Here, we describe an AL protocol which combines generative molecular AI, using REINVENT, and physics-based absolute binding free energy molecular dynamics simulation, using ESMACS, to discover new ligands for two different target proteins, 3CL and TNKS2.

View Article and Find Full Text PDF

It is increasingly widely recognized that ensemble-based approaches are required to achieve reliability, accuracy, and precision in molecular dynamics calculations. The purpose of the present article is to address a frequently raised question: what is the optimal way to perform ensemble simulation to calculate quantities of interest?

View Article and Find Full Text PDF

Alchemical relative binding free energy calculations have recently found important applications in drug optimization. A series of congeneric compounds are generated from a preidentified lead compound, and their relative binding affinities to a protein are assessed in order to optimize candidate drugs. While methods based on equilibrium thermodynamics have been extensively studied, an approach based on nonequilibrium methods has recently been reported together with claims of its superiority.

View Article and Find Full Text PDF

We subject a series of five protein-ligand systems which contain important SARS-CoV-2 targets, 3-chymotrypsin-like protease (3CLPro), papain-like protease, and adenosine ribose phosphatase, to long time scale and adaptive sampling molecular dynamics simulations. By performing ensembles of ten or twelve 10 μs simulations for each system, we accurately and reproducibly determine ligand binding sites, both crystallographically resolved and otherwise, thereby discovering binding sites that can be exploited for drug discovery. We also report robust, ensemble-based observation of conformational changes that occur at the main binding site of 3CLPro due to the presence of another ligand at an allosteric binding site explaining the underlying cascade of events responsible for its inhibitory effect.

View Article and Find Full Text PDF

Relative binding free energy (RBFE) calculations are widely used to aid the process of drug discovery. TIES, Thermodynamic Integration with Enhanced Sampling, is a dual-topology approach to RBFE calculations with support for NAMD and OpenMM molecular dynamics engines. The software has been thoroughly validated on publicly available datasets.

View Article and Find Full Text PDF

Computational methods and recently modern machine learning methods have played a key role in structure-based drug design. Though several benchmarking datasets are available for machine learning applications in virtual screening, accurate prediction of binding affinity for a protein-ligand complex remains a major challenge. New datasets that allow for the development of models for predicting binding affinities better than the state-of-the-art scoring functions are important.

View Article and Find Full Text PDF

Optimization of binding affinities for compounds to their target protein is a primary objective in drug discovery. Herein we report on a collaborative study that evaluates a set of compounds binding to ROS1 kinase. We use ESMACS (enhanced sampling of molecular dynamics with approximation of continuum solvent) and TIES (thermodynamic integration with enhanced sampling) protocols to rank the binding free energies.

View Article and Find Full Text PDF

The binding free energy between a ligand and its target protein is an essential quantity to know at all stages of the drug discovery pipeline. Assessing this value computationally can offer insight into where efforts should be focused in the pursuit of effective therapeutics to treat a myriad of diseases. In this work, we examine the computation of alchemical relative binding free energies with an eye for assessing reproducibility across popular molecular dynamics packages and free energy estimators.

View Article and Find Full Text PDF

Optimization of binding affinities for ligands to their target protein is a primary objective in rational drug discovery. Herein, we report on a collaborative study that evaluates various compounds designed to bind to the SET and MYND domain-containing protein 3 (SMYD3). SMYD3 is a histone methyltransferase and plays an important role in transcriptional regulation in cell proliferation, cell cycle, and human carcinogenesis.

View Article and Find Full Text PDF

The accurate and reliable prediction of protein-ligand binding affinities can play a central role in the drug discovery process as well as in personalized medicine. Of considerable importance during lead optimization are the alchemical free energy methods that furnish an estimation of relative binding free energies (RBFE) of similar molecules. Recent advances in these methods have increased their speed, accuracy, and precision.

View Article and Find Full Text PDF

Although researchers have been working tirelessly since the COVID-19 outbreak, so far only three drugs - remdesivir, ronapreve and molnupiravir - have been approved for use in some countries which directly target the SARS-CoV-2 virus. Given the slow pace and substantial costs of new drug discovery and development, together with the urgency of the matter, repurposing of existing drugs for the ongoing disease is an attractive proposition. In a recent study, a high-throughput X-ray crystallographic screen was performed for a selection of drugs which have been approved or are in clinical trials.

View Article and Find Full Text PDF
Article Synopsis
  • The global pandemic highlighted the shortcomings of the traditional drug discovery process, revealing it to be costly, inefficient, and slow, particularly in screening potential antiviral compounds.
  • By merging machine learning techniques with physics-based methods, researchers are finding new ways to enhance the drug discovery workflow, capitalizing on the strengths of both approaches.
  • This innovative method relies on supercomputing capabilities, allowing for large-scale calculations, which have successfully identified lead antiviral compounds targeting COVID-19 proteins.
View Article and Find Full Text PDF

Based on a careful examination of the onset of violet colored dots along the filaments in the developing floral bud stage and the formation of alternating bands of violet and white color in the matured flowers of (Passion flower), it is concluded that the pattern arises from a competition between the production of violet colored anthocyanin and the colorless flavonols along the filaments. The activator-inhibitor model of Gierer and Meinhardt along with the reaction diffusion theory of Turing is used to explain the formation of concentric rings in the flower.

View Article and Find Full Text PDF

The TIES (Thermodynamic Integration with Enhanced Sampling) protocol is a formally exact alchemical approach in computational chemistry to the calculation of relative binding free energies. The validity of TIES relies on the correctness of matching atoms across compared pairs of ligands, laying the foundation for the transformation along an alchemical pathway. We implement a flexible topology superimposition algorithm which uses an exhaustive joint-traversal for computing the largest common component(s).

View Article and Find Full Text PDF

A central quantity of interest in molecular biology and medicine is the free energy of binding of a molecule to a target biomacromolecule. Until recently, the accurate prediction of binding affinity had been widely regarded as out of reach of theoretical methods owing to the lack of reproducibility of the available methods, not to mention their complexity, computational cost and time-consuming procedures. The lack of reproducibility stems primarily from the chaotic nature of classical molecular dynamics (MD) and the associated extreme sensitivity of trajectories to their initial conditions.

View Article and Find Full Text PDF

The accurate prediction of the binding affinity changes of drugs caused by protein mutations is a major goal in clinical personalized medicine. We have developed an ensemble-based free energy approach called thermodynamic integration with enhanced sampling (TIES), which yields accurate, precise, and reproducible binding affinities. TIES has been shown to perform well for predictions of free energy differences of congeneric ligands to a wide range of target proteins.

View Article and Find Full Text PDF

Alchemical free energy methods have gained much importance recently from several reports of improved ligand-protein binding affinity predictions based on their implementation using molecular dynamics simulations. A large number of variants of such methods implementing different accelerated sampling techniques and free energy estimators are available, each claimed to be better than the others in its own way. However, the key features of reproducibility and quantification of associated uncertainties in such methods have barely been discussed.

View Article and Find Full Text PDF

Optimization of ligand binding affinity to the target protein of interest is a primary objective in small-molecule drug discovery. Until now, the prediction of binding affinities by computational methods has not been widely applied in the drug discovery process, mainly because of its lack of accuracy and reproducibility as well as the long turnaround times required to obtain results. Herein we report on a collaborative study that compares tropomyosin receptor kinase A (TrkA) binding affinity predictions using two recently formulated fast computational approaches, namely, Enhanced Sampling of Molecular dynamics with Approximation of Continuum Solvent (ESMACS) and Thermodynamic Integration with Enhanced Sampling (TIES), to experimentally derived TrkA binding affinities for a set of Pfizer pan-Trk compounds.

View Article and Find Full Text PDF

Binding free energies of bromodomain inhibitors are calculated with recently formulated approaches, namely ESMACS (enhanced sampling of molecular dynamics with approximation of continuum solvent) and TIES (thermodynamic integration with enhanced sampling). A set of compounds is provided by GlaxoSmithKline, which represents a range of chemical functionality and binding affinities. The predicted binding free energies exhibit a good Spearman correlation of 0.

View Article and Find Full Text PDF

The accurate prediction of the binding affinities of ligands to proteins is a major goal in drug discovery and personalized medicine. The time taken to make such predictions is of similar importance to their accuracy, precision, and reliability. In the past few years, an ensemble based molecular dynamics approach has been proposed that provides a route to reliable predictions of free energies based on the molecular mechanics Poisson-Boltzmann surface area method which meets the requirements of speed, accuracy, precision, and reliability.

View Article and Find Full Text PDF