Background: Defining clinical phenotypes provides opportunities for new diagnostics and may provide insights into early intervention and disease prevention. There is increasing evidence that patient-derived health data may contain information that complements traditional methods of clinical phenotyping. The utility of these data for defining meaningful phenotypic groups is of great interest because social media and online resources make it possible to query large cohorts of patients with health conditions.
View Article and Find Full Text PDFBackground: Transcriptional profiling has been performed on biopsies from ulcerative colitis patients. Limitations in prior studies include the variability introduced by inflammation, anatomic site of biopsy, extent of disease, and medications. We sought to more globally understand the variability of gene expression from patients with ulcerative colitis to advance our understanding of its pathogenesis and to guide clinical study design.
View Article and Find Full Text PDFBackground: Monogenic diseases have been shown to contribute to complex disease risk and may hold new insights into the underlying biological mechanism of Inflammatory Bowel Disease (IBD).
Methods: We analyzed Mendelian disease associations with IBD using over 55 million patients from the Optum's deidentified electronic health records dataset database. Using the significant Mendelian diseases, we performed pathway enrichment analysis and constructed a model using gene expression datasets to differentiate Crohn's disease (CD), ulcerative colitis (UC), and healthy patient samples.
Summary: Gene-based supervised machine learning classification models have been widely used to differentiate disease states, predict disease progression and determine effective treatment options. However, many of these classifiers are sensitive to noise and frequently do not replicate in external validation sets. For complex, heterogeneous diseases, these classifiers are further limited by being unable to capture varying combinations of genes that lead to the same phenotype.
View Article and Find Full Text PDFPositron emission tomography (PET) is widely applied in central nervous system (CNS) drug development for assessment of target engagement in vivo. As the majority of PET investigations have addressed drug interaction at a single binding site, findings of multitarget engagement have been less frequently reported and have often been inconsistent with results obtained in vitro. AZD3676 [N,N-dimethyl-7-(4-(2-(pyridin-2-yl)ethyl)piperazin-1-yl) benzofuran-2-carboxamide] is a novel combined serotonin (5-hydroxytryptamine) 5-HT1A and 5-HT1B receptor antagonist that was developed for the treatment of cognitive impairment in Alzheimer's disease.
View Article and Find Full Text PDFCryopreserved hepatocytes are often used as a convenient tool in studies of hepatic drug metabolism and disposition. In this study, the expression and activity of drug transporters in human and rat fresh and cryopreserved hepatocytes was investigated. In human cryopreserved hepatocytes, Western blot analysis indicated that protein expression of the drug uptake transporters [human Na(+)-taurocholate cotransporting polypeptide (NTCP), human organic anion transporting polypeptides (OATPs), human organic anion transporters, and human organic cation transporters (OCTs)] was considerably reduced compared with liver tissue.
View Article and Find Full Text PDFFreshly isolated hepatocytes are considered the gold standard for in vitro studies of hepatic drug disposition. To ensure a reliable supply of cells, cryopreserved human hepatocytes are often used. ABC-superfamily drug efflux transporters are key elements in hepatic drug disposition.
View Article and Find Full Text PDFWell-established techniques are available to predict in vivo hepatic uptake and metabolism from in vitro data, but predictive models for biliary clearance remain elusive. Several studies have verified the expression and activity of ATP-binding cassette (ABC) efflux transporters central to biliary clearance in freshly isolated rat hepatocytes, raising the possibility of predicting biliary clearance from in vitro efflux measurements. In the present study, short-term plated rat hepatocytes were evaluated as a model to predict biliary clearance from in vitro efflux measurements before major changes in transporter expression known to take place in long-term hepatocyte cultures.
View Article and Find Full Text PDFDrug transporter inhibitors are important tools to elucidate the contribution of transporters to drug disposition both in vitro and in vivo. These inhibitors are often unselective and affect several transporters as well as drug metabolizing enzymes, which can make experimental results difficult to interpret with confidence. We therefore tested 14 commonly used P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), and multidrug-resistance associated protein (MRP) inhibitors as inhibitors of cytochrome P450 (P450) enzyme activities using recombinant enzymes.
View Article and Find Full Text PDFSystematic under-prediction of clearance is frequently associated with in vitro kinetic data when extrapolated using physiological scaling factors, appropriate binding parameters and the well-stirred model. The present study describes a method of removing this systematic bias through application of empirical correction factors derived from regression analyses applied to the in vitro and in vivo data for a defined set of reference compounds. Linear regression lines were established with in vivo intrinsic clearance (CLint), derived from in vivo clearance data and scaled in vitro intrinsic clearance from isolated hepatocyte incubations.
View Article and Find Full Text PDFWe compare three different approaches to scale clearance (CL) from human hepatocyte and microsome CL(int) (intrinsic CL) for 52 drug compounds. By using the well-stirred model with protein binding included only 11% and 30% of the compounds were predicted within 2-fold and the average absolute fold errors (AAFE) for the predictions were 5.9 and 4.
View Article and Find Full Text PDFIn drug design, it is crucial to have reliable information on how a chemical entity behaves in the presence of metabolizing enzymes. This requires substantial experimental efforts. Consequently, being able to predict the likely site/s of metabolism in any compound, synthesized or virtual, would be highly beneficial and time efficient.
View Article and Find Full Text PDFThe 16th International Symposium on Microsomes and Drug Oxidations (MDO2006) in Budapest, Hungary, had almost 400 attendees and was nicely organized by Laszlo Vereczkey and colleagues. The meeting had a very high standard in the field of drug metabolism, drug transport and related areas and in addition, the social events were much appreciated. At the meeting 70 invited lectures were presented in plenary sessions and in three parallel symposia sessions, and about 178 posters were shown, among them 26 posters in the young investigators workshop.
View Article and Find Full Text PDFPredictions of the metabolic sites for new chemical entities, synthesized or only virtual, are important in the early phase of drug discovery to guide chemistry efforts in the synthesis of new compounds with reduced metabolic liability. This information can now be obtained from in silico predictions, and therefore, a thorough and unbiased evaluation of the computational techniques available is needed. Several computational methods to predict the metabolic hot spots are emerging.
View Article and Find Full Text PDFThis work had two separate aims: to evaluate different modeling techniques and to make a detailed structural characterization of CYP2C9. To achieve these goals, the consensus principal component analysis (CPCA) technique and distance measurements were used to explore available crystal structures, newly built homology models, and repeated molecular dynamics simulations. The CPCA was based on molecular interaction fields focused on the active site regions of the proteins and include detailed amino acid analysis.
View Article and Find Full Text PDFA conformer- and alignment-independent three-dimensional structure-activity relationship (3D-QSAR) model has been derived that is based on flexible molecular interaction fields calculated in GRID and the subsequent description of these fields by use of alignment-independent descriptors derived in ALMOND. The training set consisted of 22 diverse and flexible competitive inhibitors of the drug-metabolizing enzyme CYP2C9 and generated a model with r(2) of 0.81 and q(2) of 0.
View Article and Find Full Text PDFThe aim of the present study is to develop a method for predicting the site at which molecules will be metabolized by CYP 2C9 (cytochrome P450 2C9) using a previously reported protein homology model of the enzyme. Such a method would be of great help in designing new compounds with a better pharmacokinetic profile, or in designing prodrugs where the compound needs to be metabolized in order to become active. The methodology is based on a comparison between alignment-independent descriptors derived from GRID Molecular Interaction Fields for the CYP 2C9 active site, and a distance-based representation of the substrate.
View Article and Find Full Text PDFThis study describes the use of alignment-independent descriptors for obtaining qualitative and quantitative predictions of the competitive inhibition of CYP2C9 on a serie of highly structurally diverse compounds. This was accomplished by calculating alignment independent descriptors in ALMOND. These GRid INdependent Descriptors (GRIND) represent the most important GRID-interactions as a function of the distance instead of the actual position of each grid-point.
View Article and Find Full Text PDFThis study describes the generation of a three-dimensional quantitative structure activity relationship (3D-QSAR) model for 29 structurally diverse, competitive CYP2C9 inhibitors defined experimentally from an initial data set of 73 compounds. In parallel, a homology model for CYP2C9 using the rabbit CYP2C5 coordinates was built. For molecules with a known interaction mode with CYP2C9, this homology model, in combination with the docking program GOLD, was used to select conformers to use in the 3D-QSAR analysis.
View Article and Find Full Text PDFThe effect of elective lymph node dissection in patients with cutaneous malignant melanoma of the head and neck was investigated in a retrospective study. Of 517 patients in clinical stage I, 84 underwent elective dissection of the ipsilateral neck lymph nodes. In six of these patients, lymph node metastases were demonstrated at histopathological examination.
View Article and Find Full Text PDFBackground: Results of surgical treatment of cutaneous malignant melanoma (CMM) have been highly variable, probably because of patient selection. Therefore, a study of representative patients with this disease was performed.
Methods: In a defined area of Sweden, 581 patients were analyzed.
Salivary duct carcinoma (SDC), a recently defined malignant tumor usually of major salivary glands, has probably been included in the group of adenocarcinomas, NOS. As yet, only a few descriptions of its clinical behavior have appeared. We have found 12 cases of SDC treated at our institution since 1970 and have reviewed their presentation and course.
View Article and Find Full Text PDFA histological scoring system was created to determine the aggressiveness of basal cell carcinomas of the head and neck and to determine which squamous cell carcinomas of the external ear will develop metastases. Basal cell carcinomas of the external ear were the most aggressive. The parameters depth of growth and mode of invasion were the most valuable in predicting metastases.
View Article and Find Full Text PDF