pH-responsive hydrogels have numerous applications in tissue engineering, drug delivery systems, and diagnostics. Gelatin methacryloyl (GelMA) is a biocompatible, semi-synthetic polymer prepared from gelatin. When combined with aqueous solvents, GelMA forms hydrogels that have extensive applications in biomedical engineering.
View Article and Find Full Text PDFGold nanoparticles have emerged as a prominent tool in nanomedicine, particularly for applications in cancer diagnostic and treatment. One of the challenges for the successful implementation of gold nanoparticles in cancer therapy is their delivery to the specific cancer area within the tumor microenvironment. The presence of cancer enables a poorly organized vascularization system, increasing the pressure with the microenvironment, limiting the uptake of particles.
View Article and Find Full Text PDFComposites are composed of two or more materials, displaying enhanced performance and superior mechanical properties when compared to their individual components. The use of biocompatible materials has created a new category of biocomposites. Biocomposites can be applied to living tissues due to low toxicity, biodegradability and high biocompatibility.
View Article and Find Full Text PDFTherapeutic drugs can penetrate tissues by diffusion and advection. In a healthy tissue, the interstitial fluid is composed of an influx of nutrients and oxygen from blood vessels. In the case of cancerous tissue, the interstitial fluid is poorly drained because of the lack of lymphatic vasculature, resulting in an increase in interstitial pressure.
View Article and Find Full Text PDFA structural health monitoring (SHM) study of biaxial glass fibre-reinforced epoxy matrix composites under a constant, high strain uniaxial fatigue loading is performed using fibre Bragg grating (FBG) optical sensors embedded in composites at various locations to monitor the evolution of local strains, thereby understanding the damage mechanisms. Concurrently, the temperature changes of the samples during the fatigue test have also been monitored at the same locations. Close to fracture, significant variations in local temperatures and strains are observed, and it is shown that the variations in temperature and strain can be used to predict imminent fracture.
View Article and Find Full Text PDFThe study of cancer growth mechanisms and the determination of the efficacy of experimental therapeutics are usually performed in two-dimensional (2D) cell culture models. However, these models are incapable of mimicking complex interactions between cancer cells and the environment. With the advent of microfluidic technologies, the combination of multiple cell cultures with mechanical and biochemical stimuli has enabled a better recapitulation of the three-dimensional (3D) tumor environment using minute amounts of reagents.
View Article and Find Full Text PDF