Polymer-grafted nanoparticles are versatile building blocks that self-assemble into a diverse range of mesostructures. Coarse-grained molecular simulations have commonly accompanied experiments by resolving structure formation pathways and predicting phase behavior. Past simulations represented nanoparticles as spheres and the ligands as flexible chains of beads, isotropically tethered to the nanoparticles.
View Article and Find Full Text PDFIntelligent biomaterials react to their surrounding conditions, and hybrid materials are acknowledged for their remarkable customizability, achieved through the meticulous control of nanoscale interactions between organic and inorganic phases. Bioactive glasses (BG) are used clinically to regenerate bone due to their degradability, ion release, and capacity to stimulate the formation of new body tissue. In our study, we developed a core-shell hybrid system using sol-gel derived BG nano particles as the core and poly (-isopropyl acrylamide) (PNIPAM) as the shell.
View Article and Find Full Text PDFNanoparticle self-assembly is an efficient bottom-up strategy for the creation of nanostructures. In a typical approach, ligands are grafted onto the surfaces of nanoparticles to improve the dispersion stability and control interparticle interactions. Ligands then remain secondary and usually are not expected to order significantly during superstructure formation.
View Article and Find Full Text PDFSolubility and functionality of polymeric materials are essential properties determining their role in any application. In that regard, double hydrophilic copolymers (DHC) are typically constructed from two chemically dissimilar but water-soluble building blocks. During the past decades, these materials have been intensely developed and utilised as, , matrices for the design of multifunctional hybrid materials, in drug carriers and gene delivery, as nanoreactors, or as sensors.
View Article and Find Full Text PDFA quartz crystal microbalance with dissipation monitoring (QCM-D) was employed for in situ investigations of the effect of temperature and light on the conformational changes of a poly (triethylene glycol acrylate--spiropyran acrylate) (P (TEGA--SPA)) copolymer containing 12-14% of spiropyran at the silica-water interface. By monitoring shifts in resonance frequency and in acoustic dissipation as a function of temperature and illumination conditions, we investigated the evolution of viscoelastic properties of the P (TEGA--SPA)-rich wetting layer growing on the sensor, from which we deduced the characteristic coil-to-globule transition temperature, corresponding to the lower critical solution temperature (LCST) of the PTEGA part. We show that the coil-to-globule transition of the adsorbed copolymer being exposed to visible or UV light shifts to lower LCST as compared to the bulk solution: the transition temperature determined acoustically on the surface is 4 to 8 K lower than the cloud point temperature reported by UV/VIS spectroscopy in aqueous solution.
View Article and Find Full Text PDFAn effective strategy to enhance the performance of inorganic semiconductors is moving towards organic-inorganic hybrid materials. Here, we report the design of core-shell hybrid materials based on a TiO core functionalized with a polyampholytic (poly(dehydroalanine)-graft-(n-propyl phosphonic acid acrylamide) shell (PDha-g-PAA@TiO ). The PDha-g-PAA shell facilitates the efficient immobilization of the photosensitizer Eosin Y (EY) and enables electronic interactions between EY and the TiO core.
View Article and Find Full Text PDFThree triggers result in two measurable outputs from polymeric sensors: multiresponsive polyampholytic graft copolymers respond to pH-value and temperature, as well as the type and concentration of metal cations and therefore, allow the transformation of external triggers into simply measurable outputs (cloud point temperature (T ) and surface plasmon resonance (SPR) of encapsulated silver nanoparticles). The synthesis relies on poly(dehydroalanine) (PDha) as the reactive backbone and gives straightforward access to materials with tunable composition and output. In particular, a rather high sensitivity toward the presence of Cu , Co , and Pb metal cations is found.
View Article and Find Full Text PDFIn this work, we present a new synthetic strategy for fourfold-substituted perylene monoimides via tetrabrominated perylene monoanhydrides. X-ray diffraction analysis unveiled the intramolecular stacking orientation between the substituents and semicircular packing behavior. We observed the remarkable influence of the substituent on the longevity and nature of the excited state upon visible light excitation.
View Article and Find Full Text PDF