Publications by authors named "Afsharipour B"

Acute intermittent hypoxia (AIH) is an emerging technique for enhancing neuroplasticity and motor function in respiratory and limb musculature. Thus far, AIH-induced improvements in strength have been reported for upper and lower limb muscles after chronic incomplete cervical spinal cord injury (iSCI), but the underlying mechanisms have been elusive. We used high-density surface EMG (HDsEMG) to determine if motor unit discharge behaviour is altered after 15 × 60 s exposures to 9% inspired oxygen, interspersed with 21% inspired oxygen (AIH), compared to breathing only 21% air (SHAM).

View Article and Find Full Text PDF

Motoneuron properties and their firing patterns undergo significant changes throughout development and in response to neuromodulators such as serotonin. Here, we examined the age-related development of self-sustained firing and general excitability of tibialis anterior motoneurons in a young development (7-17 years), young adult (18-28 years) and adult (32-53 years) group, as well as in a separate group of participants taking selective serotonin reuptake inhibitors (SSRIs, aged 11-28 years). Self-sustained firing, as measured by ΔF, was larger in the young development (∼5.

View Article and Find Full Text PDF

Acute intermittent hypoxia (AIH) is an emerging technique for facilitating neural plasticity in individuals with chronic incomplete spinal cord injury (iSCI). A single sequence of AIH enhances hand grip strength and ankle plantarflexion torque, but underlying mechanisms are not yet clear. We sought to examine how AIH-induced changes in magnitude and spatial distribution of the electromyogram (EMG) of the biceps and triceps brachii contributes to improved strength.

View Article and Find Full Text PDF
Article Synopsis
  • - Recent research aimed to explore how flexor afferent conditioning suppresses the extensor H-reflex, challenging previous beliefs that it was mainly due to GABA receptor activation causing primary afferent depolarization (PAD).
  • - The study involved 28 participants and found that both postsynaptic inhibition of extensor motoneurons and post-activation depression (PAD-induced spikes) of extensor Ia afferents contributed to the H-reflex suppression, lasting up to 150 ms after conditioning.
  • - In mice, similar results were observed with GABAergic neuron activation causing significant post-activation depression and subsequent H-reflex suppression, suggesting that the mechanism is more complex than just PAD affecting Ia terminals.
View Article and Find Full Text PDF

Sensory and corticospinal tract (CST) pathways activate spinal GABAergic interneurons that have axoaxonic connections onto proprioceptive (Ia) afferents that cause long-lasting depolarizations (termed primary afferent depolarization, PAD). In rodents, sensory-evoked PAD is produced by GABA receptors at nodes of Ranvier in Ia afferents, rather than at presynaptic terminals, and facilitates spike propagation to motoneurons by preventing branch-point failures, rather than causing presynaptic inhibition. We examined in 40 human participants whether putative activation of Ia-PAD by sensory or CST pathways can also facilitate Ia afferent activation of motoneurons via the H-reflex.

View Article and Find Full Text PDF

. Botulinum toxin (BT) induced cholinergic denervation of hyperactive motor units (MUs) is a clinically accepted and extensively practiced way of managing focal spasticity after stroke. The denervation potentially initiates a temporary reorganization of the MU activation patterns and structures by inducing the emergence of a large number of newly innervated muscle fibers.

View Article and Find Full Text PDF

The objective of this study was to characterize the effects of intramuscular botulinum toxin (BT) injections on the electromechanical delay (EMD) in spastic human biceps muscles. The EMD is calculated as the time lag between the muscle activation onset, as recorded from the surface electromyogram (sEMG), and the onset of recorded force. In a cohort of chronic stroke survivors, we compared the computed EMD derived from the spastic (injected) biceps brachii with that from the contralateral muscle.

View Article and Find Full Text PDF

Objective: High-density surface electromyography (HD-sEMG) has been utilized extensively in neuromuscular research. Despite its potential advantages, limitations in electrode design have largely prevented widespread acceptance of the technology. Commercial electrodes have limited spatial fidelity, because of a lack of sharpness of the signal, and variable signal stability.

View Article and Find Full Text PDF

Background: Spasticity is a key motor impairment that affects many hemispheric stroke survivors. Intramuscular botulinum toxin (BT) injections are used widely to clinically manage spasticity-related symptoms in stroke survivors by chemically denervating muscle fibers from their associated motor neurons. In this study, we sought to understand how BT affects muscle activation, motor unit composition and voluntary force generating capacity over a time period of 3 months.

View Article and Find Full Text PDF

Spasticity is a major impairment that can occur following a hemispheric stroke and is often treated with injections of botulinum toxin, a neurotoxin that impairs transmission at the neuromuscular junction. Hyperreflexia is a defining feature of spasticity. Our main objective here was to quantify the time course of changes in the deep tendon reflex (DTR) responses and voluntary activation capacity following BT injection as well as to track changes in a clinical assessment of spasticity.

View Article and Find Full Text PDF

Persistent inward calcium and sodium currents () activated during motoneuron recruitment help synaptic inputs maintain self-sustained firing until derecruitment. Here, we estimate the contribution of the to self-sustained firing in human motoneurons of varying recruitment threshold by measuring the difference in synaptic input needed to maintain minimal firing once the is fully activated compared with the larger synaptic input required to initiate firing before full activation. Synaptic input to ≈20 dorsiflexor motoneurons simultaneously recorded during ramp contractions was estimated from firing profiles of motor units decomposed from high-density surface electromyography (EMG).

View Article and Find Full Text PDF

Botulinum toxin (BT) is widely prescribed by physicians for managing spasticity post stroke. In an ongoing study, we examine the spatial pattern of muscle activity in biceps brachii of stroke survivors before and after receiving BT, examined over the course of 11 weeks (2 weeks before - 9 weeks after). We hypothesize that BT alters muscle electrophysiology by disrupting fiber neuromuscular transmission in an inhomogeneous manner and we seek to detect these changes using grid surface electromyography (sEMG).

View Article and Find Full Text PDF

We investigated spatial activation patterns of upper extremity muscles during isometric force generation in both intact persons and in hemispheric stroke survivors. We used a 128-channel surface electromyogram (EMG) grid to record the electrical activity of biceps brachii muscles during these contractions. EMG data were processed to develop 2-D root mean square (RMS) maps of muscle activity.

View Article and Find Full Text PDF

Hemispheric stroke survivors tend to have persistent motor impairments, with muscle weakness and muscle spasticity observed concurrently in the affected muscles. The objective of this preliminary study was to identify whether impairment of muscle force transmission could contribute to weakness in spastic-paretic muscles of chronic stroke survivors. To characterize the efficiency of the transmission of muscle forces to the tendon, we activated biceps brachii muscle electrically by stimulating the musculocutaneous nerve with maximum current.

View Article and Find Full Text PDF

Human spinal cord injuries (SCI) disrupt the pathways between brain and spinal cord, resulting in substantial impairment and loss of function. Currently, we do not have the ability to precisely quantify the "functional" level of motor injury. The aim of this study is to determine if high-density surface electromyography imaging (SEI) can be used to characterize the location and extent of the spinal lesion.

View Article and Find Full Text PDF

The Brachialis (BR) is placed under the Biceps Brachii (BB) deep in the upper arm. Therefore, the detection of the corresponding surface Electromyogram (sEMG) is a complex task. The BR is an important elbow flexor, but it is usually not considered in the sEMG based force estimation process.

View Article and Find Full Text PDF

Musicians activate their muscles in different patterns, depending on their posture, the instrument being played, and their experience level. Bipolar surface electrodes have been used in the past to monitor such activity, but this method is highly sensitive to the location of the electrode pair. In this work, the spatial distribution of surface EMG (sEMG) of the right trapezius and right and left erector spinae muscles were studied in 16 violin players and 11 cello players.

View Article and Find Full Text PDF

We investigated the spatial patterns of electrical activity in stroke-affected muscles using the high density surface electromyogram (sEMG) grids. We acquired 128-channel sEMG signals from the impaired as well as contralateral Biceps Brachii (BB) muscles of stroke survivors and from healthy participants at various force levels from 20 to 60% of maximum voluntary contraction in an isometric non-fatiguing recording protocol. We found the spatial sEMG pattern to be consistent across force levels in healthy and stroke subjects.

View Article and Find Full Text PDF

A method to detect automatically the location of innervation zones (IZs) from 16-channel surface EMG (sEMG) recordings from the external anal sphincter (EAS) muscle is presented in order to guide episiotomy during child delivery. The new algorithm (2DCorr) is applied to individual motor unit action potential (MUAP) templates and is based on bidimensional cross correlation between the interpolated image of each MUAP template and two images obtained by flipping upside-down (around a horizontal axis) and left-right (around a vertical axis) the original one. The method was tested on 640 simulated MUAP templates of the sphincter muscle and compared with previously developed algorithms (Radon Transform, RT; Template Match, TM).

View Article and Find Full Text PDF

The Particle Swarm Optimization (PSO) algorithm is applied to the problem of "load sharing" among muscles acting on the same joint for the purpose of estimating their individual mechanical contribution based on their EMG and on the total torque. Compared to the previously tested Interior-Reflective Newton Algorithm (IRNA), PSO is more computationally demanding. The mean square error between the experimental and reconstructed torque is similar for the two algorithms.

View Article and Find Full Text PDF