Integrin αvβ3, a primary cell-adhesion receptor, plays a crucial role in various biological processes, including angiogenesis, pathological neovascularization, and tumor metastasis. Its expression increases during tumor angiogenesis. The insulin-like growth factor 1 receptor (IGF1R) is a transmembrane protein that stimulates vital signaling pathways, promoting cancer cell growth, survival, and metabolism.
View Article and Find Full Text PDFInsulin-like growth factor-1 receptor (IGF-1R) is expressed in malignant and normal breast tissue, and its intermittent activation by multiple IGF-1 signaling pathways leads to neoplasm cell proliferation, impaired apoptosis, increased survival, and resistance to cytotoxic therapeutic agents. Therefore, simultaneous suppression of the receptor and its cognate ligand would be a powerful promising strategy inhibiting malignant phenotypes of breast cancer cells. In the present study, Methoxypoly(ethylene glycol) - Poly(caprolactone) was hybridized with Dimethyldioctadecylammonium bromide (DDAB) cationic lipid (mPEG-PCL-DDAB) nanoparticles (NPs) and used as a carrier for simultaneous delivery of lycopene and insulin-like growth factor 1 receptor-specific lycopene encapsulated-mPEG-PCL-DDAB nanoparticle/siRNA to MCF-7 breast cancer cells.
View Article and Find Full Text PDFColorectal cancer (CRC) is regarded as the third most common cancer worldwide. Although Regorafenib as a receptor tyrosine kinase inhibitor (RTKI) disrupts tumor growth and angiogenesis in metastatic CRC (mCRC) patients, drug resistance leads to poor prognosis and survival. Integrin-β1 overexpression has been proposed to be the major player in this regard.
View Article and Find Full Text PDFDue to the vast and inappropriate use of the antibiotics, microorganisms have begun to develop resistance to the commonly used antimicrobial agents. So therefore, development of the new and effective antimicrobial agents seems to be necessary. According to some recent reports, carbon-based nanomaterials such as fullerenes, carbon nanotubes (CNTs) (especially single-walled carbon nanotubes (SWCNTs)) and graphene oxide (GO) nanoparticles show potent antimicrobial properties.
View Article and Find Full Text PDF