Scarcity of stream salinity data poses a challenge to understanding salinity dynamics and its implications for water supply management in water-scarce salt-prone regions around the world. This paper introduces a framework for generating continuous daily stream salinity estimates using instance-based transfer learning (TL) and assessing the reliability of the synthetic salinity data through uncertainty quantification via prediction intervals (PIs). The framework was developed using two temporally distinct specific conductance (SC) datasets from the Upper Red River Basin (URRB) located in southwestern Oklahoma and Texas Panhandle, United States.
View Article and Find Full Text PDF