Graphite nanoplatelets (GNPs) as an oil nano additive has gained importance to enhance the lubrication properties of renewable lubricants, such as vegetable oils. Using appropriately processed GNPs is necessary to gain the required tribological advantage. The present study investigated ball-milled GNPs, to understand the effect of GNPs concentration, and applied load on tribological behavior.
View Article and Find Full Text PDFIn the present work, the effect of graphite nanoplatelets (GNPs) on tribological properties of the aluminum (Al), and Al/alumina (AlO) composite are studied. GNPs are multilayer graphene sheets which were used as a solid lubricant material. Two sets of composites, Al/GNPs and Al/GNPs/AlO with varying amounts of reinforcements, were synthesized by powder metallurgy that involves cold compaction followed by hot compaction.
View Article and Find Full Text PDFThe development of bio-based composites is essential in order to protect the environment while enhancing energy efficiencies. In the present investigation, the plant-derived cellulose nano-fibers (CNFs)/bio-based epoxy composites were manufactured using the Liquid Composite Molding (LCM) process. More specifically, the CNFs with and without chemical modification were utilized in the composites.
View Article and Find Full Text PDFThe Wenzel and Cassie-Baxter models are almost exclusively used to explain the contact angle dependence of the structure of rough and patterned solid surfaces. However, these two classical models do not always accurately predict the wetting properties of surfaces since they fail to capture the effect of many interactions occurring during wetting, including, for example, the effect of the disjoining pressure and of crystal microstructure, grains, and defects. We call such effects the second-order effects and present here a model showing how the disjoining pressure isotherm can affect wettability due to the formation of thin liquid films.
View Article and Find Full Text PDF